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Abstract. A family of deformed Hopf algebras corresponding to the classical maximal isometry
algebras of zero-curvatureN -dimensional spaces (the inhomogeneous algebrasiso(p, q),
p+ q = N , as well as some of their contractions) are shown to have a bicrossproduct structure.
This is done for both the algebra and, in a low-dimensional example, for the (dual) group aspects
of the deformation.

1. Introduction

The procedure to deform simple algebras and groups was established by Drinfel’d [1], Jimbo
[2] and Faddeevet al [3]. The algorithm, which leads to the so-called ‘quantum’ algebras,
does not cover, however, the case of non-semisimple algebras. Since the contraction
process leads to inhomogeneous algebras by starting from simple ones, it is natural to
use it as a way to deform inhomogeneous Lie (i.e. ‘classical’ or undeformed) algebras.
This path of extending the classical idea of the Lie algebra contraction to the case of
deformed algebras was proposed by Celeghiniet al [4]. The basic requirement to define
a deformed inhomogeneous algebra is the commutativity of the processes of contraction
and deformation: when considering a simple algebra and one of their inhomogeneous
contractions, both at classical and deformed levels, the deformation of the contracted
inhomogeneous Lie algebras should coincide with the contraction of the deformed simple
algebra. This commutativity is not always guaranteed, and in general requires [4] a
redefinition of the deformation parameterq in terms of the contraction parameter and the
new deformation one, so thatq is not a passive element in the contraction. This was used,
for instance, to obtain theκ-Poincaŕe algebra [5], for which the deformation parameterκ

has dimensions of inverse length.
The concept of contraction of Lie algebras (or groups) was discussed in the early 1950s

by İnönü and Wigner [6] (see also [7]). The idea of group contraction itself arose in the group
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analysis of the non-relativistic limit, and its applications to mathematical physics problems
have been very fruitful. The study of details behind this procedure unveils interesting
mathematical structures, which in many important cases are linked to physical properties.
In particular, the contraction process may increase the group cohomology [8] (see also [9]),
as is the case in the standard non-relativistic limit. Several attempts have been made to
systematize the study of contractions and recently a new approach has been put forward
in [10], under the name of graded contractions. The key idea there is to preserve a given
grading of the original Lie algebra. This condition may fit neatly with physical requirements
and is automatically satisfied in the simplest case of theİnönü–Wigner contractions, which
correspond to the simplestZ2-grading.

A class of Lie algebras describing a whole family of contractions is the so-called
orthogonal Cayley–Klein (CK) algebras. The name is due to historical reasons: these
are the Lie algebras of the motion groups of real spaces with a projective metric [11] (see
also [12]). The same family appears as a natural subset of allZ⊗N2 -graded contractions
which can be obtained fromso(N + 1) [13]. And furthermore, among orthogonal CK
algebras we find not only all simple pseudo-orthogonal algebras, but many non-semisimple
algebras of physical importance, such as the kinematical Poincaré and Galilei algebras in
(N − 1, 1) dimensions, the Euclidean algebra inN dimensions, etc. The CK scheme does
not deal with a single Lie algebra, but with a whole family of them simultaneously, each of
which is parametrized by a set of real numbers with a well defined geometrical and physical
significance. The main point to be stressed is the ability of this kind of approach to describe
some properties of many Lie algebras in a single unified form. This is possible as the Lie
algebras in the CK family, though not simple, are ‘very near’ to the simple ones, and many
structural properties of the simple algebras, when suitably reformulated, still survive for the
CK algebras.

It is possible to give deformations of algebras in the CK family; naturally enough these
will be said to belong to the CK family of Hopf ‘quantum’ algebras. In [14] deformations
of the enveloping algebras of all algebras in the CK family ofso(p, q), p + q = 3, 4 were
given. For higher dimensions, i.e. for algebras in the family ofso(p, q), (p + q = N + 1)
with N > 3, a quantum deformation of the general parent member of the CK family is still
not known, yet there exists a scheme of quantum deformations encompassing all motion
algebras of flat affine spaces inN dimensions, which include the ordinary inhomogeneous
iso(p, q), (p + q = N) [15]. This scheme provides a Hopf algebra deformation for each
algebra in the family. Some of its members are physically relevant non-semisimple algebras,
and include as particular cases most of the deformations of these algebras found in literature.

An important fact in quantum algebra/group theory is the (co)existence of two closely
linked algebraic structures: the algebra (as expressed by the commutators or the commuting
properties of the algebra of functions on the group) and the coalgebra (as given by the
coproduct). Most of the complications found when doing quantum contractions can be
traced to the need to deal simultaneously with these two aspects. For instance, a naive
contraction might lead to divergences either in the coproduct or in theR-matrix [4, 16].
One of the main motivations behind the CK scheme was to be able to describe at the same
time a family of algebras, including some simple and some contracted algebras, in such a
way that the possible origin of divergences under contractions is clearly seen and controlled.

In this paper we address a specific problem where the advantages of a CK-type scheme
are exhibited. In the classical case, anİnönü–Wigner (IW) contraction of a simple algebra
leads to a non-semisimple one which is the semidirect sum of an Abelian algebra and
the preserved subalgebra of the original algebra with respect to the contraction was made.
All IW contractions of simple algebras have a semidirect structure. It is then natural to
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ask: is there a similar pattern for the contracted deformations, i.e. for the Hopf algebra
deformations of contracted simple Lie algebras? The analogue of the semidirect product
is an example of the bicrossproduct of Hopf algebras, introduced by Majid [17] (see also
[18, 19]). The aim of this paper is to show that all deformed algebras in the affine† CK
family isoω2,...,ωN (N) have indeed a bicrossproduct structure, as is the case of theκ-Poincaŕe
[21]. This result opens the possibility of recovering more easily the deformed dual groups
Funq(ISOω2,...,ωN (N)) by using the dual bicrossproduct ‘group-like’ expressions (see [20]
for some group-like (rather than algebra-like) examples of this construction). Classically,
the isoω2,...,ωN (N) family includes all inhomogeneous Lie algebrasiso(p, q) (p + q = N),
so we will refer loosely to the aim of the paper as showing the bicrossproduct structure
of deformed inhomogeneous groups. It should be kept in mind, however, that we are
referring to a specific deformation, and that examples exist (see [20]) where a contraction
of a deformed algebra has no bicrossproduct structure.

The paper is organized as follows. In section 2 we briefly describe the classical CK
algebras and present a discussion on contractions and dimensional analysis since this is
relevant for the assignment of physical dimensions to the deformation parameters. In
section 3 we give the explicit expressions for theirq-deformations. The bicrossproduct
structure of theseq-deformed CK Hopf algebras is shown in section 4. Examples of this
structure for physically interesting algebras are presented in section 5. In section 6 we show,
as an example, how to obtain the (dual) group deformation in the case of lowest dimension
N = 2. In section 7 we present our conclusions and we close the paper with an appendix.

2. Affine CK Lie algebras and dimensional analysis

2.1. The CK scheme of geometries and Lie algebras

The complete family of theso(N+1) CK algebras is a set of real Lie algebras of dimension
(N+1)N/2, characterized byN real parameters(ω1, ω2, . . . , ωN) [12]. This family appears,
for example, as a natural subfamily [13] of all the graded contractions from the Lie algebra
so(N + 1) [22] corresponding to aZ⊗N2 grading of so(N + 1), and its elements will be
denotedsoω1,ω2,...,ωN (N + 1); in particular,so1,1,...,1(N + 1) ≡ so(N + 1). In terms of a
basis ofsoω1,ω2,...,ωN (N + 1) adapted to the grading,{Jab; a < b, a, b = 0, 1, . . . , N}, this
family of algebras is defined by

[Jab, Jac] = ωabJbc [Jab, Jbc] = −Jac [Jac, Jbc] = ωbcJab (2.1)

where nowa < b < c, a, b, c = 0, 1, . . . , N , ωab := ωa+1ωa+2 . . . ωb =
∏b
l=a+1ωl (thus,

ωabωbc = ωac) and [Jab, Jcd ] = 0 if the four indices are different. By a simple rescaling of
the generators, all the numerical values of the constantsωi may be brought to one of the
values 1, 0,−1, hence the complete CK family contains 3N algebras which are different as
graded contractions, even if some of them may still be isomorphic.

When all theωi are non-zero but some of them are negative, the algebrasoω1,ω2,...,ωN (N+
1) is isomorphic to a certain pseudo-orthogonal algebraso(p, q) (p+q = N +1, p > q >
0). If all the ωi are non-zero we can also introduceJba, (a < b) by Jba := − 1

ωab
Jab and

Jaa := 0, so that the commutation relations can be written in the familiar form:

[Jij , Jlm] = δimJlj − δjlJim + δjmωlmJil + δilωijJjm. (2.2)

If, however, some constant(s)ωi = 0, the algebras (2.1) become inhomogeneous
and correspond to algebras that are obtained fromso(p, q) through a sequence of IW

† We use the word ‘affine’ in the sense of inhomogeneous. Not all deformed inhomogeneous groups have a
bicrossproduct structure; this is, for instance, the case ofUq (E(2)) as discussed in [20].
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contractions. To describe them let us denoteh(m) (m = 1, . . . , N) the subalgebra generated
by the Jab (a < b) for which a, b satisfy eitherb < m or a > m. A complement for
h(m) is the vector subspacep(m) (not always a subalgebra) spanned by the elementsJab
with a < m and b > m. The decompositionsoω1,ω2,...,ωN (N + 1) = p(m) ⊕ h(m) is in
fact a Cartan-like decomposition, and there exists an involutive automorphism of the Lie
algebrasoω1,ω2,...,ωN (N +1) with p(m) andh(m) as the anti-invariant and invariant subspaces.
The structure of the subalgebrah(m) and of the vector subspacep(m) of the Lie algebra
soω1,ω2,...,ωN (N + 1) can be graphically displayed by arranging the generators ofso(N + 1)
in the form of a triangle

J01 J02 . . . J0(m−1) J0m J0(m+1) . . . J0N

J12 . . . J1(m−1) J1m J1(m+1) . . . J1N

. . .
...

...
...

...

J(m−2)(m−1) J(m−2)m J(m−2)(m+1) . . . J(m−2)N

J(m−1)m J(m−1)(m+1) . . . J(m−1)N

Jm(m+1) . . . JmN
. . .

...

JN−1N .

(2.3)

We see that the generators which span the subspacep(m) are them(N+1−m) generators
in the rectangle determined by the cornerJ(m−1)m. The triangles at its left and below
correspond to the subalgebrassoω1,...,ωm−1(m) and soωm+1,...,ωN (N + 1 − m) respectively,
the direct sum of which is the subalgebrah(m). The subspacep(m) corresponding to
the ωm-rectangle in the diagram, can be identified with the Lie algebra quotient space
soω1,ω2,...,ωN (N + 1)/soω1,...,ωm−1(m)⊕ soωm+1,...,ωN (N + 1−m).

For each decompositionsoω1,ω2,...,ωN (N + 1) = p(m) ⊕ h(m), m = 1, . . . , N , there is a
possible IW contraction, denoted by0(m), to be performed on the algebrasoω1,ω2,...,ωN (N+1).
Specifically, if we denote the generators of the standardsoω1,ω2,...,ωN (N+1) algebra byX, the
IW contraction0(m) of soω1,ω2,...,ωN (N +1) is given by theε → 0 limit of the replacements

0(m)(X) ≡ X′ =
{
X if X ∈ h(m)

εX if X ∈ p(m)
m = 1, . . . , N (2.4)

Under the contraction0(m), the algebrasoω1,ω2,...,ωN (N+1) goes to another algebra in the CK
family with the same values of theωi constants except forωm = 0. Thus, in the triangular
arrangement of generators, theN possible IW contractions correspond to theN different
rectangles that can be selected inside the large triangle. These rectangles are completely
Abelianized by the contractions, while the commutators with one or two generators outside
p(m) remain unchanged. As an example, the contraction given by (2.4) withm = 1 and
starting from aso(p, q) algebra, where allωi are different from zero, corresponds to the
limit ε → 0 of J0i 7→ J ′0i = εJ0i , Jij = J ′ij (i 6= 0) , J0i , Jij ∈ so(p, q). This leads to
[J ′0i , J

′
0j ] = ±ε2J ′ij and henceJ ′0i i = 1, . . . , N determines the AbelianN -dimensional

ideal p(1).
Let us now consider the homogeneous spaceS ≡ SOω1,ω2,...,ωN (N + 1)/SOω2,...,ωN (N),

whereSOω2,...,ωN (N) is the subgroup generated by the subalgebrah(m) with m = 1. This
space has an invariant canonical connection, and a hierarchy of metrics, coming after suitable
rescalings from the Cartan–Killing form in the algebrasoω1,ω2,...,ωN (N + 1). When the
constantsω2, . . . , ωN are different from zero, then the ‘main’ metric is non-degenerate,
the invariant canonical connection turns out to be the corresponding Levi-Civita metric
connection, and the spaceS has a curvature which is constant and equal toω1.
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In the particular case(ω1, ω2, . . . , ωN) = (ω1, 1, . . . ,1) the spaceS reduces to the
Riemannian space (positive definite metric) of constant curvatureω1 and dimensionN .
When ω1 = 0 the algebrasso0,ω2,...,ωN (N + 1), can be realized as algebras of groups
of affine transformations onRN [12]; in this case we shall rename the generators as
{Pi := J0i , Jij ; i < j, i, j = 1, . . . , N}, the new names stressing the role ofPi as
generating translations and ofJij as the generators of rotations around the origin of
the space. Each subalgebrah(m), m = 1, . . . , N , is spanned by the set of generators
{Pi , Jij , i, j = 1, . . . , m− 1; Jkl, k, l = m, . . . , N}, and hence the collection of subalgebras
h(m) can be clearly identified in the spaceS as the isotropy subalgebras of a point (for
m = 1), of a line (form = 2), . . . , of a hyperplane (form = N ).

The non-zero Lie brackets ofso0,ω2,...,ωN (N + 1) are given by

[Jij ,Pi ] = Pj [Jij ,Pj ] = −ωijPi [Jij , Jik] = ωijJjk
[Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij

(2.5)

where the indicesi, j, k = 1, . . . , N are always assumed to be ordered,i < j < k. Note
in particular that all translation generators commute (as witnessing the zero curvature). It
will be convenient to denote thisso0,ω2,...,ωN (N + 1) Lie algebra byisoω2,...,ωN (N), and the
corresponding group byISOω2,...,ωN (N). There are 3N−1 different N -dimensional affine
CK geometries, and from relations (2.5) it is clear that the groupsISOω2,...,ωN (N) have a
semidirect product structure

ISOω2,...,ωN (N) = SOω2,...,ωN (N)� TN (2.6)

where TN is the Abelian subgroup generated by{Pi; i = 1, . . . , N} (in the case
ω1 = 0, this Abelian subgroup can be identified with the CK homogeneous spaceS
itself) and SOω2,...,ωN (N) is a general CK group withN − 1 constantsωi , generated
by {Jij ; i, j = 1, . . . , N}. The ‘main’ metric which is kept invariant by the action of
this group is described by the quadratic form given by a matrix with diagonal entries
(1, ω2, ω2ω3, . . . , ω2 . . . ωN). Among these inhomogeneous groups we can recognize the
Euclidean group inN dimensions for which(ω1, ω2, . . . , ωN) = (0, 1, 1, . . . ,1), the
Poincaŕe group in(N − 1, 1) dimensions (appearing several times in the CK affine scheme
as for example for(0,−(1/c2), 1, . . . ,1)) or the Galilei group in(N − 1, 1) dimensions
which corresponds to the values(ω1, ω2, . . . , ωN) = (0, 0, 1, . . . ,1); we recall that in all of
these examplesω1 = 0. The geometrical meaning of the contractions0(m), m = 1, . . . , N ,
is to describe the behaviour of the spaceS ≡ SOω1,ω2,...,ωN (N + 1)/SOω2,...,ωN (N) around a
point, a line,. . . , a hyperplane. In particular, within the inhomogeneous CK familyω1 = 0,
only those contractions0(m),m = 2, . . . , N may produce a different algebra. In other
words, these inhomogeneous algebras can be thought of as the result of a ‘local’ contraction
(around a point,m = 1) which make the associated curvature vanish, although they can
still be contracted to describe the behaviour of the space around a line,. . . , a hyperplane,
and hence the remaining contractions0(m),m = 2, . . . , N may be relevant. For instance,
the non-relativistic limit, where the behaviour of spacetime geometry is approximated in the
neighbourhood of a given (time-like) line corresponds to the contraction whereω2→ 0.

A second-order central element for the algebraisoω2,...,ωN (N), coming after a
specialization to this case of a suitable rescaling of the general CK Killing form, reads

C =
N−1∑
i=1

ωiNP2
i + P2

N. (2.7)

Notice that this Casimir only involves generators from the Abelian translation subalgebra.
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Summarizing, we see that the graded contraction language allows us to describe
contractions simply by setting some parameters equal to zero. These contractions may
still be described by the standard IW framework, although the graded contraction scheme
is more economical and permits a unified discussion of the different contractions.

2.2. Contractions and dimensional analysis

The minimal possible approach to study the dimensional structure in CK algebras is done
by enforcing the dimensional homogeneity of the commutation relations in all algebras
in the CK family. In this approach, all generators as well as the structure constants are
dimensional, in such a way that these dimensions are the same in all CK algebras. Consider
the redefinitionJab = ηabJ′ab for any CK algebra. If we now want the second commutator in
(2.1) to be preserved (we still choose the structure constants equal to 1 as dimensionless, for
we are interested here in algebras in the CK family, and not beyond), we needηabηbc = ηac,
so that we see thatηab may be expressed asηab = ηa+1ηa+2 . . . ηb. If we now make this
change in the first and third commutators, we get

[J′ab, J
′
ac] =

ωab

η2
ab

J′bc [J′ac, J
′
bc] =

ωbc

η2
bc

J′ab. (2.8)

In the special case when allωi are different from zero (the case of simple algebras), the
choiceη2

ab = |ωab| leads to the standard commutators for theJ′ab of the real formso(p, q)
of the specific algebra considered, with all non-zero structure constants equal to±1, and
the J′ab’s are dimensionless.

In the general case (for generic CK algebras) by virtue of the above redefinition, the
generators in (2.1) have as dimensions [Jab] = [ωab]1/2 =∏b

i=a+1[ωi ]1/2. In this approach,
each constantωa has dimensions, and if the dimension of the generatorJa−1a is written as
D−1
a , then it is clear that the dimensions of eachωa are [ωa] = D−2

a , irrespective ofωa
being zero or not. The dimension of each generatorJab includes a factor [ωa] for each of
theωa-rectangles in (2.3) to whichJab belongs.

Another possibility is to allocate dimensions to generators and/or canonical parameters
for each CK algebra independently, in such a way as to make all non-zero structure constants
in the algebra dimensionless. The idea of basing the dimensional analysis of a theory on
the structure of its underlying Lie group/algebra has its roots in the well known examples
of the Poincaŕe and Galilei groups, which are obtained by contracting with respect to two
dimensionful parameters, the de Sitter radius and the velocity of lightc, and has been
discussed in [23]; see also [24].

If for a simple Lie algebra in the CK family (2.1) with non-zeroωi constants we
adopt this hypothesis, then as a consequence all the generators of the algebra, as well as
their associated canonical parameters are also without dimensions (as theJ′ab’s in the first
approach). If the same requirement is applied to a non-simple CK Lie algebra, then we get
the result that some generators are also dimensionless, while others get a dimension. For
example, if this is done on a CK algebra witha singleωa equal to zero, it is clear from
the commutation relations that those generators which acquire in this case a non-trivial
dimensionD−1

a (Da is then the dimension of a corresponding canonical parameter) are
exactly those inside theωa-rectangle corresponding to the constantωa which vanished in
the triangular arrangement of generators.

If there are two constants equal to zero, sayωa = ωb = 0, there will be two non-trivial
dimensions, and so on. Remark that now eachωa has a dimension which is stillD−1

a when
ωa = 0 but is dimensionless whenωa 6= 0. In this alternative choice the dimensions of
the generators will still be given by [Jab] = [ωab]1/2 = ∏b

i=a+1[ωi ]1/2 but those factors
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whereωi 6= 0 are [ωi ] = 1. This situation is exemplified in the transition from the Poincaré
to the Galilei algebras. These are given by the values(ω1, ω2, ω3, ω4) = (0,−1/c2, 1, 1)
and (0, 0, 1, 1) respectively, and the arrangement of the Galilei and or Poincaré generators
written in the usual physical notation is given by:

H P1 P2 P3

K1 K2 K3

J12 J13

J23

. (2.9)

The assignment of dimensions made this way for Poincaré and for Galilei algebras is

D−1
1 D−1

1 D−1
1 D−1

1
1 1 1

1 1
1

D−1
1 D−1

1 D−1
2 D−1

1 D−1
2 D−1

1 D−1
2

D−1
2 D−1

2 D−1
2

1 1
1

which gives the single ‘length’ dimension in relativistic physics and the customaryT ,L

dimensions of non-relativistic physics (D1 ≡ T andD2 ≡ LT −1, soD1D2 = L).
The relation between both perspectives to the dimensional analysis of CK algebras is as

follows. All constantsωa can be considered at the beginning as dimensionful, and then all
generators are also dimensionful. However, when a givenωa 6= 0, the dimensionDa can be
removed by takingωa as a pure number, which can be set equal to±1; this is tantamount
to fixing the scale of the generators or, in other words, to measuring the associated group
parameter in terms of the corresponding unit much in the same way as in a relativistic
theory we may adopt units in whichc = 1 (i.e.ω2 = −1 above). In the former example,
settingω3 = 1= ω4 may be understood as having hidden universal constants in the theory
(cf [25]). However, once a dimensionfulωa has been set equal to zero (i.e. a contraction
has been made), the generators in the corresponding box retain a dimension [ωa]1/2 since
they cannot be rescaled any longer. This is why some generators in the former Galilei
example retain the non-removable dimensionsD1,D2, whileD2 disappears in the Poincaré
case whileD3,D4 have already disappeared in both cases†.

3. DeformedN -dimensional affine CK algebras

All the family of affineN -dimensional (N > 2) CK algebrasisoω2,...,ωN (N) can be endowed
with a standard deformed Hopf algebra structure which has been called a ‘quantum’
inhomogeneous CK structure and which has been given in [14, 15]. In order to avoid
repeating statements on the index ranges, we will conform in sections 3 and 4 to the
following convention: the range of a latin indexi, j, k will be 1, . . . , N − 1, and the index
N will be dealt with separately, unless otherwise stated explicitly. Also, when two indices
i, j appear in a generator, we will always assume thati < j .

Let A be the algebra of the formal power series in the deformation parameterλ with
coefficients in the enveloping algebraU(isoω2,...,ωN (N)) of the Lie algebraisoω2,...,ωN (N)

of (2.5). Then the coproduct, co-unit, antipode and deformed commutation relations of the
algebraUλ(isoω2,...,ωN (N)), which is a Hopf algebra, are given by

† The above is not the only group-theoretical mechanism for the introduction of dimensions. Where centrally
extended groups are physically relevant, the dimensions of the two-cocycle realizing the extension play a role.
For instance, in the(1+ 1)-dimensional extended Galilei group we find two parameters characterizing the two-
dimensional cohomology space, which correspond to the mass and a (constant) force.
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(1) Coproduct:

1(PN) = 1⊗ PN + PN ⊗ 1, 1(Pi ) = e−
λ
2PN ⊗ Pi + Pi ⊗ e

λ
2PN

1(Jij ) = 1⊗ Jij + Jij ⊗ 1

1(JiN ) = e−
λ
2PN ⊗ JiN + JiN ⊗ e

λ
2PN − λ

2

i−1∑
s=1

Jsie−
λ
2PN ⊗ ωiNPs + λ

2

i−1∑
s=1

ωiNPs ⊗ e λ2PNJsi

+λ
2

N−1∑
s=i+1

Jise−
λ
2PN ⊗ ωsNPs − λ

2

N−1∑
s=i+1

ωsNPs ⊗ e
λ
2PNJis . (3.1)

(2) Co-unit:

ε(Pi ) = ε(PN) = ε(Jij ) = ε(JiN ) = 0. (3.2)

(3) Antipode:

γ (Pi ) = −Pi γ (PN) = −PN
γ (Jij ) = −Jij γ (JiN ) = −JiN − ωiN(N − 1)

λ

2
Pi

(3.3)

(it may be written in a compact way asγ (X) = −e(N−1) λ2PNXe−(N−1) λ2PN ).
(4) Deformed commutators:

[JiN ,Pj ] = δij 1

λ
sinh(λPN)

[JiN , JjN ] = ωjN
{
Jij cosh(λPN)+ λ

2

4

( i−1∑
s=1

ωiNPsWsij −
j−1∑
s=i+1

ωsNPsWisj

+
N−1∑
s=j+1

ωsNPsWijs

)}
i < j

(3.4)

where

Wijk = ωijPiJjk − PjJik + PkJij i < j < k i, j, k = 1, . . . , N − 1. (3.5)

The remaining commutators are non-deformed and as given in (2.5). It may be checked
that (A,1, ε, γ ) satisfies the Hopf algebra axioms and hence equations (3.1)–(3.5) may
be taken as the definition of the deformationUλ(isoω2,...,ωN (N)) of U(isoω2,...,ωN (N)). The
parameterλ has an inverse dimension to that ofPN so that the productλPN is dimensionless,
and may be interpreted as the parameter left after contracting the deformed Hopf algebra
Uq(soω1,...,ωN (N+1)) by previously redefiningq in terms ofλ and the contraction parameter.
However, the expression of the deformationUq(soω1,...,ωN (N + 1)) in the ‘physical’ basis is
not known and this precludes us for the moment from deriving (3.1)–(3.5) by contracting
its deformed simple parent algebraUq(soω1,...,ωN (N + 1)). Nevertheless, it may be seen
that the deformed Hopf algebraUλ(isoω2,...,ωN (N)) is a quantization of the coboundary Lie
bialgebra(U(isoω2,...,ωN (N)), r) generated by the (non-degenerate) classicalr-matrix

r = λ
N−1∑
s=1

JsN ∧ Ps . (3.6)

Due to the structure ofr and our convention about dimensions, it turns out thatr is
dimensionless, regardless of the values of the constantsωi since the product ofJsN andPs
will always have the same dimensions ofPN .
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We remark that the above deformation (3.1)–(3.5) is not the only one possible for the
isoω2,...,ωN (N) family. However, it is distinguished by the fact that all its members present
deformed algebra and coalgebra sectors.

The quantum analogue of the second-order Casimir (2.7) is expressed by

Cλ =
N−1∑
i=1

ωiNP2
i +

4

λ2

[
sinh

(
λ

2
PN
)]2

. (3.7)

As far as their action on the algebra generators is concerned, the quantum versions0
(m)
λ

of the classical IW contractions0(m) are defined to coincide with the classical one (2.4).
In particular, the generatorPN is rescaled by the corresponding contraction parameterε

in any of the contractions in the family0(m)λ , 0(m)(PN) ≡ P′N = εPN (for ε → 0). This
means that since one has to replacePN in (3.1) byP′N/ε, the exponents there will diverge.
It is therefore natural to replace simultaneouslyλ by ελ′, i.e. to rescale the deformation
parameter by0(m)(λ) ≡ λ′ = λ/ε (all primes are removed after taking the contraction
limit), as the simplest possibility to preserve the coproduct (3.1). Therefore, the quantum
contraction0(M)λ is defined as the result of taking the limitε → 0 in (3.1)–(3.4) once the
transformations

0
(m)
λ (ε,X) = 0(m)(ε,X) X = (P, J) 0

(m)
λ (ε, λ) = λ/ε (3.8)

are performed. We conclude this section with three observations. First, we have made
a constant reference to the IW procedure only because up to now the graded contraction
theory had not been extended to deformed algebras. Secondly, as far as the generatorsX
are concerned,0(m)λ = 0(m), so that only the action of0(m)λ on λ makes0(m) and 0(m)λ

different. The third comment is that the rescaling ofλ andPN implied by0(m)λ may change
their dimensions (see section 2) while consistently keeping a dimensionlessλPN exponent.

4. Bicrossproduct structure ofUλ(isoω2,...,ωN (N ))

It is not obvious to see whether the Hopf algebraUλ(isoω2,...,ωN (N)) has a bicrossproduct
structure by a simple inspection of (3.1)–(3.4). The clue in this direction is provided by
the bicrossproduct structure [21] of theκ-Poincaŕe algebra [5] (appearing in our scheme
when (ω1, ω2, ω3, ω4) = (0, 1, 1,−1)), which is clearly displayed in terms of a new set of
generators.

The aim of this section is to show thatall the deformed Hopf algebrasUλ(isoω2,...,ωN (N))

in the CK family have indeed a bicrossproduct structure. The basic bicrossproduct formulae
used are recalled in the appendix; for a detailed exposition, see [17]. LetPi , Jij , PN , JiN
be the new set of generators defined in terms of the old onesPi andJij by

Pi = e−(λ/2)PNPi PN = PN Jij = Jij

JiN = 1

2
{JiN , e−(λ/2)PN } + λ

4

i−1∑
s=1

ωiN {Jsi ,Ps}e−(λ/2)PN − λ
4

N−1∑
s=i+1

ωsN {Jis ,Ps}e−(λ/2)PN
(4.1)

A straightforward but tedious computation leads to the following new expressions (where
i, j, k = 1, . . . , N − 1) for the coproduct (3.1), co-unit (3.2), antipode (3.3) and algebra
commutators ((3.4) and/or (2.5)):
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(1) Coproduct:

1(Pi) = e−λPN ⊗ Pi + Pi ⊗ 1 1(PN) = 1⊗ PN + PN ⊗ 1

1(Jij ) = 1⊗ Jij + Jij ⊗ 1

1(JiN) = e−λPN ⊗ JiN + JiN ⊗ 1+ λ
i−1∑
s=1

ωiNPs ⊗ Jsi − λ
N−1∑
s=i+1

ωsNPs ⊗ Jis .
(4.2)

(2) Co-unit:

ε(Pi) = ε(PN) = ε(Jij ) = ε(JiN) = 0. (4.3)

(3) Antipode:

γ (Pi) = −exp(λPN)Pi γ (PN) = −PN γ (Jij ) = −Jij

γ (JiN) = −eλPN JiN + λeλPN
i−1∑
s=1

ωiNPsJsi − λeλPN
N−1∑
s=i+1

ωsNPsJis .
(4.4)

(4) Commutators:

[Pi, Pj ] = 0 [Pi, PN ] = 0

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij
[Jij , JiN ] = ωijJjN [Jij , JjN ] = −JiN [Jik, JjN ] = ωjNJij
[Jij , Pk] = δikPk − δjkωijPi [Jij , PN ] = 0

[JiN , Pj ] = δij
(

1− e−2λPN

2λ
− λ

2

N−1∑
s=1

ωsNP
2
s

)
+ λωiNPiPj [JiN , PN ] = −ωiNPi.

(4.5)

Thus, all brackets for the new generatorsPi, PN, Jij , JiN coincide with the non-deformed
ones given in (2.5) (substituting everywhere the newX’s for their counterpartsX) except
for [JiN , Pj ], which is now the only deformed commutation relation. The effect of
(4.1) is to modify the second commutator in (3.4), so that one recovers the undeformed
soω1,ω2,...,ωN (N + 1) algebra commutators, and to replace the commutators in the first line
of (3.4) by those in the last line of (4.5). As a result, terms with theW symbols are no
longer present in the deformed commutators.

It may be checked that forλ = 1/κ andN = 4 with (ω1, ω2, ω3, ω4) = (0, 1, 1,−1)
equations (4.2)–(4.5) reproduce theκ-Poincaŕe algebra in the basis of [21] for which
[κ] = L−1, [P4] = L−1. If we want P4 to have dimensions of inverse time we may
take (ω1, ω2, ω3, ω4) = (0, 1, 1,−c2) instead sinceω1, before being set equal to zero, was
ω1 = 1/R2; in this case [κ] = T −1. We check that the metric after (2.6) will diverge in
a non-relativistic limit withω4 = −c2, which explains why a non-relativistic limit of the
κ-Poincaŕe algebra [5] requires a further redefinition of the deformation parameterκ (see
the end of section 5).

The new expressions for the coproduct, co-unit, antipode and commutation relations
of Uλ(isoω2,...,ωN (N)) now allow us to uncover its bicrossproduct structure. For
this aim, consider the translation sector, generated by{P1, . . . , PN }. According to
expressions (4.2)–(4.5), it defines a commutative but non-cocommutative Hopf subalgebra of
Uλ(isoω2,...,ωN (N)) which will be denoted asUλ(TN). Now letU(soω2,...,ωN (N)) be the non-
commutative and cocommutative non-deformed CK Hopf algebra spanned by the remaining
generators{Jij ; i < j, i, j = 1, . . . , N}, hence with commutation relations given by (2.5)
and primitive coproduct (when allω’s are non-zero, this is a pseudo-orthogonal algebra).
Let us define a right actionα : Uλ(TN)⊗ U(soω2,...,ωN (N))→ Uλ(TN) by

α(Pi, Jjk) ≡ Pi C Jjk := [Pi, Jjk] j < k, i, j, k = 1, 2, . . . , N (4.6)
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where the commutators are given in (4.5), and a left coactionβ : U(soω2,...,ωN (N)) →
Uλ(TN)⊗ U(soω2,...,ωN (N)) by

β(Jij ) := 1⊗ Jij

β(JiN) := e−λPN ⊗ JiN + λ
i−1∑
s=1

ωiNPs ⊗ Jsi − λ
N−1∑
s=i+1

ωsNPs ⊗ Jis .
(4.7)

It may be checked thatUλ(TN) is a right U(soω2,...,ωN (N))-module algebra
(U(soω2,...,ωN (N))F< Uλ(TN)) and thatU(soω2,...,ωN (N)) is a left Uλ(TN)-comodule coal-
gebra (U(soω2,...,ωN (N)) >J Uλ(TN)) under the action (4.6) and coaction (4.7), respec-
tively, and that the compatibility conditions [17] (A.1)–(A.5) betweenα y β needed for
U(soω2,...,ωN (N)) ⊗ Uλ(TN) to have a bicrossproduct structure are fulfilled. For instance,
(A.5) is automatically satisfied, sinceU(soω2,...,ωN (N)) is undeformed and hence cocommu-
tative andUλ(TN) is Abelian. This case, especially relevant here, was discussed in [18].
Then, the bicrossproduct structure ofUλ(isoω2,...,ωN (N)) may be stated in the form of the
following.

Theorem. The deformed Hopf CK family of algebrasUλ(isoω2,...,ωN (N)) has a
bicrossproduct structure

Uλ(isoω2,...,ωN (N)) = U(soω2,...,ωN (N))
β FJαUλ(TN)

relative to the right actionα and left coactionβ given by (4.6) and (4.7) respectively.

Proof. As mentioned, the mappingsα andβ satisfy the bicrossproduct conditions as may be
checked by direct computation. Then expressions (A.6)–(A.9) give the associated coproduct,
co-unit and antipode. It is then verified that the resulting expressions are in agreement with
(4.2)–(4.5). �

The interesting consequence of the above discussion is that, as the direct inspection
of expressions (4.6) and (4.7) shows, the action and the coaction mappings depend on the
parametersωi in such a way that the bicrossproduct structure is formally invariant under
any contractionωi = 0. In other words, forλ-deformations in the affine CK family,
the bicrossproduct structure is preserved byall the successive contractions: contracting
and taking bicrossproduct of the appropriate Hopf algebras with the resulting actions and
coactions are commuting processes. This is well within the spirit of the CK scheme, the aim
of which is to state properties which hold simultaneously for a large number of algebras.

The expression of the deformed Casimir (3.7) in the new basis is

Cλ =
N−1∑
i=1

ωiNe−λPNP 2
i +

4

λ2

[
sinh

(
λ

2
PN

)]2

(4.8)

it only depends on the generators of the deformed Hopf subalgebraUλ(TN).
On the other hand, the expression for ther-matrix is similar to the former (3.6) but in

terms of the new generators,

r = λ
N−1∑
s=1

JsN ∧ Ps. (4.9)

5. Applications

The quantum algebras we are dealing with range from deformations of the inhomogeneous
algebrasiso(p, q), p + q = N (when all constantsω2, ω3, . . . ωN are different from zero)
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to the extreme case of a Hopf deformation of the algebra, where all constants are equal
to zero, which can be called flag space algebra (in this case the group action preserves a
complete flag).

Classically, all these algebras are semidirect products, and indeed there is a semidirect
structure in the CK algebras associated to the vanishing of each constantωi . We have
restricted ourselves here to the algebras withω1 = 0, all of which have the semidirect
structure displayed in (2.5). Whenall remaining constantsωi are different from zero, say
ωi = ±1, the algebraisoω2,...,ωN (N) is isomorphic to an inhomogeneous pseudo-orthogonal
algebraiso(p, q), p + q = N , with the semidirect structure given by the natural action of
so(p, q) onRN . These algebras are physically very relevant and some of their deformations
have been thoroughly studied. In particular, theλ-deformed structures given in (3.1)–(3.4)
include a deformedN -dimensional Euclidean algebra, a deformed(N−1, 1) Galilei algebra
and several deformed(N − 1, 1) Poincaŕe algebras, as well as their analogues for any
signature.

The action and coaction mappings associated with the bicrossproduct are given by (4.6)
and (4.7). Explicitly, equation (4.5) gives

α(PN, Jij ) ≡ PN C Jij := 0 α(PN, JiN) ≡ PN C JiN := ωiNPi
α(Pk, Jij ) ≡ Pk C Jij := −δkiPj + δkjωijPi

α(Pk, JiN) ≡ Pk C JiN := −δki
(

1− e−2λPN

2λ
− λ

2

N−1∑
s=1

ωsNP
2
s

)
− λωiNPiPk.

(5.1)

If we consider the special case whereN = 4, this set of algebras includesfour
deformed Poincaré algebraUλ(p(s)(3, 1)), s = 1, 2, 3, 4. These are deformations of the
four undeformed CK algebras, denoted asp(s)(3, 1), s = 1, 2, 3, 4, which are isomorphic to
the (3, 1) Poincaŕe algebra, and correspond to identifying one of the generatorsPi to the
time translation generator, the other three being space translations. If the time generator is
taken successively to be ourP1, P2, P3, P4, these four algebras correspond to the four sets
of values of(ω1, ω2, ω3, ω4) = (0,−1/c2, 1, 1), (0,−c2,−1/c2, 1), (0, 1,−c2,−1/c2), and
(0, 1, 1,−c2). The set of four deformed Poincaré algebrasUλ(p(s)(3, 1)), s = 1, 2, 3, 4 [15]
includes three ‘space-like’ Poincaré deformed algebras, the last one being theκ-Poincaŕe
algebra onceλ = 1/κ with [PN ] = T −1). In each case, the rotation generators comprise the
boost and space rotation generators and the identification is made according to the choice of
the time generator (e.g. in theκ-Poincaŕe the boosts are theNi = Ji4). TheN -dimensional
κ-Poincaŕe [26] is associated to theωi values(0, 1, . . . ,1,−c2).

The Euclidean algebrae(4) appears only once (up to rescalings) for(ω1, ω2, ω3, ω4) =
(0, 1, 1, 1) and the bicrossproduct structure of their Hopf CK quantum deformationUλ(e(4)),
is

Uλ(e(4)) = U(so(4)) FJUλ(R4)

(see [20] in the lower-dimensional case).
The remaining quantum Hopf algebras in the CK family are quantum deformations

of less known undeformed Lie algebras, yet their bicrossproduct structure is described in
parallel to the former cases. Especially relevant from the physical point of view is the
Galilei algebrag(3, 1), appearing within the affine CK family for theω values(0, 0, 1, 1)
(and only for these). It is worth remarking that this Galilei algebra is obtained from the
Uλ(p(1)(3, 1)) associated to theω values(0,−1/c2, 1, 1) by means of the contractionω2→ 0
(i.e. c→∞), which gives a deformation different from that in [27, 28]. The bicrossproduct
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structure of the resultingUλ(g(3, 1)) Hopf algebra (obtained for(0, 0, 1, 1) is

Uλ(g(3, 1)) = U(so(0,1,1)(4)) FJUλ(R4) ≡ U(iso(1,1)(3)) FJUλ(R4).

It is interesting to check how the action and coaction mappings for the Poincaré Hopf
algebraUλ(p(1)(3, 1)) reduce to the corresponding Galilean ones under the contraction
ω2 → 0: Uλ(p(1)(3, 1)) to Uλ(g(3, 1)). We give explicitly the complete Hopf structure
of both Uλ(p(1)(3, 1)) and Uλ(g(3, 1)), which correspond to the choices(0,−1/c2, 1, 1)
and (0, 0, 1, 1) for the ωi ’s. We will present the results in the usual physical basis,
constituted by the generators of time translation,H , space translationsP1, P2, P3, boosts
K1,K2,K3, and space rotationsJ1, J2, J3, which are related to the CK original generators
{Pi, Jij ; i, j = 1, 2, 3, 4} as follows. The threespacetranslations, now denoted asP1, P2, P3

in order to conform with the standard physical notation, correspond to those formerly
denoted asP2, P3, P4 in (4.2)–(4.5), while the time translation generatorH now corresponds
to the formerP1 and the rest in (4.2)–(4.5) correspond toJ12 = K1, J13 = K2, J14 =
K3, J34 = J1, J24 = −J2, J23 = J3, as given in diagram (2.9).

The Hopf structure of the Poincaré algebra Uλ(p(1)(3, 1)) now follows from
expressions (4.2)–(4.5):

(1) Coproduct:

1(X) = e−λP3 ⊗X +X ⊗ 1 X ∈ {H,P1, P2}
1(P3) = 1⊗ P3+ P3⊗ 1

1(X) = 1⊗X +X ⊗ 1 X ∈ {K1,K2, J3}
1(K3) = e−λP3 ⊗K3+K3⊗ 1− λP1⊗K1− λP2⊗K2

1(J1) = e−λP3 ⊗ J1+ J1⊗ 1+ λH ⊗K2+ λP1⊗ J3

1(J2) = e−λP3 ⊗ J2+ J2⊗ 1− λH ⊗K1+ λP2⊗ J3.

(5.2)

(2) Co-unit:

ε(H) = ε(Pi) = ε(Ki) = ε(Ji) = 0 i = 1, 2, 3. (5.3)

(3) Antipode:

γ (X) = −eλP3X X ∈ {H,P1, P2} γ (P3) = −P3

γ (X) = −X X ∈ {K1,K2, J3}
γ (K3) = −eλP3K3− λeλP3P1K1− λeλP3P2K2

γ (J1) = −eλP3J1+ λeλP3HK2+ λeλP3P1J3

γ (J2) = −eλP3J2− λeλP3HK1+ λeλP3P2J3.

(5.4)
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(4) Commutators:

[H,Pi ] = 0 [Pi, Pj ] = 0 i, j = 0, 1, 2, 3

[Ki,H ] = Pi i = 1, 2 [K3, H ] = 1− e−2λP3

2λ
− λ

2c2
H 2− λ

2
P 2

1 −
λ

2
P 2

2

[Ki, Pj ] = 1

c2
δijH i, j = 1, 2 [Ki, P3] = 0

[K3, P1] = − λ
c2
HP1 [K3, P2] = − λ

c2
HP2 [K3, P3] = 1

c2
H

[J1, H ] = λP2H [J2, H ] = −λP1H [J3, H ] = 0

[J1, P1] = λP2P1 [J1, P2] = 1− e−2λP3

2λ
+ λ

2c2
H 2− λ

2
P 2

1 +
λ

2
P 2

2

[J1, P3] = −P2

[J2, P1] = −1− e−2λP3

2λ
− λ

2c2
H 2− λ

2
P 2

1 +
λ

2
P 2

2 [J2, P2] = −λP1P2

[J2, P3] = P1

[J3, P1] = P2 [J3, P2] = −P1 [J3, P3] = 0

[Ki,Kj ] = − 1

c2
εijkKk [Ji,Kj ] = εijkKk [Ji, Jj ] = εijkJk i, j = 1, 2, 3.

(5.5)

The explicit form of the action and coaction forUλ(p(1)(3, 1)), given by (4.6) and (4.7) is
obtained from the commutators (5.5) and the coproduct (5.2). The bicrossproduct structure
of Uλ(p(1)(3, 1)) is

Uλ(p(1)(3, 1)) = U(so(−1/c2,1,1)(4)) FJUλ(R4).

In the non-relativistic limit,ω2 = −1/c2 → 0, this deformed algebra goes to a new
deformed Galilei algebra,Uλ(g(3, 1)), whose coproduct, co-unit and antipode are the same
as in (5.2)–(5.4). With respect to the Lie commutators we write only those that are different
from the Poincaŕe Uλ(p(1)(3, 1)) ones in (5.5)

[K3, H ] = 1− e−2λP3

2λ
− λ

2
P 2

1 −
λ

2
P 2

2

[Ki, Pj ] = 0 i, j = 1, 2, 3

[J1, P2] = 1− e−2λP3

2λ
− λ

2
P 2

1 +
λ

2
P 2

2

[J2, P1] = −1− e−2λP3

2λ
− λ

2
P 2

1 +
λ

2
P 2

2

[Ki,Kj ] = 0 i, j = 1, 2, 3.

(5.6)

From simple inspection we see that the Galilean action (as the commutators) has changed
from that inUλ(p(1)(3, 1)), yet the coaction is the same as in Poincaré since the coproduct
has remained the same.

All other Poincaŕe quantum algebras (including theκ-Poincaŕe) do not allow a direct
‘non-relativistic’ contraction; this is clear when the constantc is explicitly written as above
(see [28] for a discussion).
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6. The group deformation aspect: the case of Funλ(ISOω2(2))

The bicrossproduct structure ofUλ(isoω2,...,ωN (N)) opens the way to the possibility of
recovering the dual group Funλ(ISOω1,ω2,...,ωN (N)) more easily from the dual bicrossproduct
‘group-like’ expressions. We show here the explicit calculation in the lowest dimension
N = 2 to exhibit the procedure. As shown in section 4, the deformed Hopf algebra has the
bicrossproduct structure

Uλ(isoω2(2)) = U(soω2(2)) FJUλ(T2). (6.1)

Let us now recover from it the quantum dual group, Funλ(ISOω2(2)).
The dual algebra Funλ(T2) of Uλ(T2) is easily found fromUλ(T2) to be

1(a1) = 1⊗ a1+ a1⊗ 1 1(a2) = 1⊗ a2+ a2⊗ 1 (6.2)

ε(ai) = 0 γ (ai) = −ai i = 1, 2 (6.3)

and

[a1, a2] = λa1 (6.4)

wherea1, a2 are a system of coordinates of Funλ(T2).
On the other hand, let Fun(SOω2(2)) be the dual ofU(SOω2(2)) generated byϕ, with

a non-deformed Hopf structure defined by

1(ϕ) = 1⊗ ϕ + ϕ ⊗ 1 ε(ϕ) = 0 γ (ϕ) = −ϕ. (6.5)

Now, the problem is finding a pair of mappingsβ̄ and ᾱ (see the appendix),

β̄ : Funλ(T2)→ Funλ(T2)⊗ Fun(SOω2(2))

ᾱ : Funλ(T2)⊗ Fun(SOω2(2))→ Fun(SOω2(2))
(6.6)

duals, respectively, toα andβ as given in (5.1), (4.7) forN = 2. A calculation shows that
they have the form

β̄(a1) = a1⊗ Cω2(ϕ)+ a2⊗ ω2Sω2(ϕ)

β̄(a2) = −a1⊗ Sω2(ϕ)+ a2⊗ Cω2(ϕ)
(6.7)

and

ᾱ(a1⊗ ϕ) = λ(1− Cω2(ϕ)) ᾱ(a2⊗ ϕ) = λSω2(ϕ) (6.8)

where the functionsCω(ϕ) andSω(ϕ) reduce to the trigonometric cosine and sine functions
for ω = 1 and to the hyperbolic ones forω = −1 (see [29] for more details). Note that

(β̄(a1), β̄(a2)) = (a1, a2)⊗̇
(
Cω2(ϕ) −Sω2(ϕ)

ω2Sω2(ϕ) Cω2(ϕ)

)
where the 2× 2 matrix is the transpose of the matrix representing the generic element of
the groupSOω2(2).

Since β̄ modifies the originally cocommutative coproduct in Funλ(T2) and ᾱ the
commutation relations between the generators of the two algebras Funλ(T2) and that
generated byϕ (see equations (A′.7) and (A′.6)), we may now determine through its
bicrossproduct structure the deformed Hopf algebra Funλ(SOω2(2+1)) which has the form

1(a1) = 1⊗ a1+ a1⊗ Cω2(ϕ)+ a2⊗ ω2Sω2(ϕ)

1(a2) = 1⊗ a2− a1⊗ Sω2(ϕ)+ a2⊗ Cω2(ϕ)

1(ϕ) = 1⊗ ϕ + ϕ ⊗ 1

(6.9)
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ε(ai) = 0 i = 1, 2 ε(ϕ) = 0 (6.10)

γ (a1) = −Cω2(ϕ)a1− ω2Sω2(ϕ)a2

γ (a2) = Sω2(ϕ)a1− Cω2(ϕ)a2
(6.11)

[a1, ϕ] = λ(1− Cω2(ϕ)) [a2, ϕ] = λSω2(ϕ) [a1, a2] = λa1. (6.12)

In this way the results obtained in [29] (and [20] forω2 = 1, a1 → −a2, a2 → a1) are
recovered.

7. Conclusions

The bicrossproduct structure is true for all deformed Hopf algebras in the inhomogeneous CK
family Uλ(isoω2,...,ωN (N)). The theorem in section 4 follows from the fact that the action and
the coaction mappings that characterize the bicrossproduct structure ofUλ(isoω2,...,ωN (N))

depend onω2, ω3, . . . , ωN in such a way that the contractions are simply described by
setting (some of) them equal to zero. In this sense we may say that the bicrossproduct
structure (4.6), (4.7) is compatible with the contractions (3.8). As a result, any contracted
λ-algebra is also a bicrossproduct for the ‘contracted’ action and coaction. We can also
state this result by saying that the bicrossproduct structure does not diverge under any of
the contractions within the CK affine family. These results extend obviously to the dual
Funλ(ISOω2,...,ωN (N)) family of deformed Hopf algebras.

The deformation parameterλ behaves in the same way under the complete family of CK
contractions of the inhomogeneous algebrasUλ(isoω2,...,ωN (N)); if the (first, for instance)
contraction has been realized as a limit, the deformation parameterz in q = ez is redefined
by0(m)λ (z) = z′ = λ

R
(cf equation (3.8)) and the limit corresponds to [ω1]1/2 = 1/R→ 0. As

discussed, this can be understood as a mechanism assigning dimensions to the deformation
parameter characterizing the deformedUλ(isoω2,...,ωN (N)) CK family. In any case, we
wish to stress here that the dimensions ofλ which result from thefirst contraction process
(that involving ω1) depend crucially on the assumed dependence of the dimensionlessq

(or z) on the new deformation parameterλ and of the contraction one. For instance, if
q = exp(λ/R) as above, whereR is a radius (length), [λ] = L1. Any other dimensions
assigned toλ necessarily include hidden hypotheses on the dependence ofq on other
fundamental constants (¯h andc are necessary, for instance, in order to have [λ]= (mass)−1).
This is especially important because the appearance of Planck’s ¯h, for instance, implies
quantum considerations in the strict (i.e. physical) sense of the word. These go beyond the
purely mathematical deformation process, and should be accordingly discussed separately
in any physical application of aλ-deformed algebra (see [30] in connection with deformed
Minkowski spaces).

It would be interesting to know whether the bicrossproduct structure is present in other
cases, i.e. forω1 6= 0 different from theω1 = 0 deformations considered here. However,
the general form of the deformationUq(soω1,...,ωN (N + 1)) of the general CK algebra in the
‘physical’ (rather than the Cartan–Weyl) basis is unknown, and this precludes us for the
moment from discussing this point.
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Appendix: Some bicrossproduct formulae

We reproduce here some of the formulae needed in the main text, and refer to [17] for
details. In these formulaeA ≡ Uλ(TN) andH ≡ U(soω2,...,ωN (N)). The right action is
α : A ⊗ H → A, α(a ⊗ h) ≡ a G h, and the left coactionβ : H → A ⊗ H, β(h) =
h(1) ⊗ h(2), (h(1) ∈ A, h(2) ∈ H) so that (A, α) [(H, β)] is a right H-module [left A-
comodule]. The compatibility conditions are

εA(a G h) = εA(a)εH(h) (A.1)

1(a G h) ≡ (a G h)(1) ⊗ (a G h)(2) = (a(1) G h(1))h(1)(2) ⊗ a(2) G h(2)(2) (A.2)

β(1H) ≡ 1(1)H ⊗ 1(2)H = 1A ⊗ 1H (A.3)

β(hg) ≡ (hg)(1) ⊗ (hg)(2) = (h(1) G g(1))g(1)(2) ⊗ h(2)g(2)(2) (A.4)

h
(1)
(1)(a G h(2))⊗ h(2)(1) = (a G h(1))h(1)(2) ⊗ h(2)(2) (A.5)

(subindices refer to coproducts as usual;superindicesrefer to the components ofβ(h)).
When they are satisfied the right–left bicrossproduct structureHβ FJαA onK ≡ H⊗A is
determined by

(h⊗ a)(g ⊗ b) = hg(1) ⊗ (a G g(2))b h, g ∈ H, a, b ∈ A (A.6)

1K(h⊗ a) = h(1) ⊗ h(1)(2)a(1) ⊗ h(2)(2) ⊗ a(2) (A.7)

εK = εH ⊗ εA 1K = 1H ⊗ 1A (A.8)

S(h⊗ a) = (1H ⊗ SA(h(1)a))(SH (h(2))⊗ 1A). (A.9)

Let A,H be the duals ofA,H. The dual ‘group’ aspect of the above formulae imply
the existence of mappings̄α : A⊗ H → H, β̄ : A→ A⊗ H , dual to(β, α) respectively,
which satisfy the conditions

εH (a F̄h) = εA(a)εH (h) (A′.1)

1(a F̄h) ≡ (a F̄h)(1) ⊗ (a F̄h)(2) = (a(1)(1) F̄h(1))⊗ a(2)(1)(a(2) F̄h(2)) (A′.2)

β̄(1A) ≡ 1(1)A ⊗ 1(2)A = 1A ⊗ 1H (A′.3)

β̄(ab) ≡ (ab)(1) ⊗ (ab)(2) = a(1)(1)b(1) ⊗ a(2)(1)(a(2) F̄ b(2)) (A′.4)

a
(1)
(2) ⊗ (a(1) F̄h)a(2)(2) = a(1)(1) ⊗ a(2)(1)(a(2) F̄h). (A′.5)

Then, there is a left–right bicrossproduct structureHᾱIGβ̄ A onK = H ⊗ A defined by

(h⊗ a)(g ⊗ b) = h(a(1) F̄ g)⊗ a(2)b h, g ∈ H a, b ∈ A (A′.6)

1K(h⊗ a) = h(1) ⊗ a(1)(1) ⊗ h(2)a(2)(1) ⊗ a(2) (A′.7)

εK = εH ⊗ εA 1K = 1H ⊗ 1A (A′.8)

S(h⊗ a) = (1H ⊗ SA(a(1)))(SH (ha(2))⊗ 1A). (A′.9)
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