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Abstract. A family of deformed Hopf algebras corresponding to the classical maximal isometry
algebras of zero-curvaturév-dimensional spaces (the inhomogeneous algebsasp, ),

p+q = N, as well as some of their contractions) are shown to have a bicrossproduct structure.
This is done for both the algebra and, in a low-dimensional example, for the (dual) group aspects
of the deformation.

1. Introduction

The procedure to deform simple algebras and groups was established by Drinfel'd [1], Jimbo
[2] and Faddeeet al [3]. The algorithm, which leads to the so-called ‘quantum’ algebras,
does not cover, however, the case of non-semisimple algebras. Since the contraction
process leads to inhomogeneous algebras by starting from simple ones, it is natural to
use it as a way to deform inhomogeneous Lie (i.e. ‘classical’ or undeformed) algebras.
This path of extending the classical idea of the Lie algebra contraction to the case of
deformed algebras was proposed by Celeghtral [4]. The basic requirement to define
a deformed inhomogeneous algebra is the commutativity of the processes of contraction
and deformation: when considering a simple algebra and one of their inhomogeneous
contractions, both at classical and deformed levels, the deformation of the contracted
inhomogeneous Lie algebras should coincide with the contraction of the deformed simple
algebra. This commutativity is not always guaranteed, and in general requires [4] a
redefinition of the deformation parametgrin terms of the contraction parameter and the
new deformation one, so thatis not a passive element in the contraction. This was used,
for instance, to obtain the-Poincaé algebra [5], for which the deformation parameter
has dimensions of inverse length.

The concept of contraction of Lie algebras (or groups) was discussed in the early 1950s
by indni1 and Wigner [6] (see also [7]). The idea of group contraction itself arose in the group
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analysis of the non-relativistic limit, and its applications to mathematical physics problems
have been very fruitful. The study of details behind this procedure unveils interesting
mathematical structures, which in many important cases are linked to physical properties.
In particular, the contraction process may increase the group cohomology [8] (see also [9]),
as is the case in the standard non-relativistic limit. Several attempts have been made to
systematize the study of contractions and recently a new approach has been put forward
in [10], under the name of graded contractions. The key idea there is to preserve a given
grading of the original Lie algebra. This condition may fit neatly with physical requirements
and is automatically satisfied in the simplest case ofitié@i—Wigner contractions, which
correspond to the simplegt-grading.

A class of Lie algebras describing a whole family of contractions is the so-called
orthogonal Cayley—Klein (CK) algebras. The name is due to historical reasons: these
are the Lie algebras of the motion groups of real spaces with a projective metric [11] (see
also [12]). The same family appears as a natural subset c%;%kgraded contractions
which can be obtained fromo(N + 1) [13]. And furthermore, among orthogonal CK
algebras we find not only all simple pseudo-orthogonal algebras, but many non-semisimple
algebras of physical importance, such as the kinematical Péirevadt Galilei algebras in
(N —1,1) dimensions, the Euclidean algebrafhdimensions, etc. The CK scheme does
not deal with a single Lie algebra, but with a whole family of them simultaneously, each of
which is parametrized by a set of real numbers with a well defined geometrical and physical
significance. The main point to be stressed is the ability of this kind of approach to describe
some properties of many Lie algebras in a single unified form. This is possible as the Lie
algebras in the CK family, though not simple, are ‘very near’ to the simple ones, and many
structural properties of the simple algebras, when suitably reformulated, still survive for the
CK algebras.

It is possible to give deformations of algebras in the CK family; naturally enough these
will be said to belong to the CK family of Hopf ‘quantum’ algebras. In [14] deformations
of the enveloping algebras of all algebras in the CK family@fp, ¢), p + ¢ = 3, 4 were
given. For higher dimensions, i.e. for algebras in the familyafp, g), (p +g =N +1)
with N > 3, a quantum deformation of the general parent member of the CK family is still
not known, yet there exists a scheme of quantum deformations encompassing all motion
algebras of flat affine spaces M dimensions, which include the ordinary inhomogeneous
iso(p,q), (p +q = N) [15]. This scheme provides a Hopf algebra deformation for each
algebra in the family. Some of its members are physically relevant non-semisimple algebras,
and include as particular cases most of the deformations of these algebras found in literature.

An important fact in quantum algebra/group theory is the (co)existence of two closely
linked algebraic structures: the algebra (as expressed by the commutators or the commuting
properties of the algebra of functions on the group) and the coalgebra (as given by the
coproduct). Most of the complications found when doing quantum contractions can be
traced to the need to deal simultaneously with these two aspects. For instance, a naive
contraction might lead to divergences either in the coproduct or inRtmeatrix [4, 16].

One of the main motivations behind the CK scheme was to be able to describe at the same
time a family of algebras, including some simple and some contracted algebras, in such a
way that the possible origin of divergences under contractions is clearly seen and controlled.

In this paper we address a specific problem where the advantages of a CK-type scheme
are exhibited. In the classical case, ladbni—Wigner (IW) contraction of a simple algebra
leads to a non-semisimple one which is the semidirect sum of an Abelian algebra and
the preserved subalgebra of the original algebra with respect to the contraction was made.
All IW contractions of simple algebras have a semidirect structure. It is then natural to



Deformed inhomogeneous algebras 3071

ask: is there a similar pattern for the contracted deformations, i.e. for the Hopf algebra
deformations of contracted simple Lie algebras? The analogue of the semidirect product
is an example of the bicrossproduct of Hopf algebras, introduced by Majid [17] (see also
[18, 19]). The aim of this paper is to show that all deformed algebras in the jafike
family iso,,. .., (N) have indeed a bicrossproduct structure, as is the case offfoéncaé
[21]. This result opens the possibility of recovering more easily the deformed dual groups

.....

,,,,, oy (V) family includes all inhomogeneous Lie algebias(p, q) (p +¢g = N),

so we will refer loosely to the aim of the paper as showing the bicrossproduct structure
of deformed inhomogeneous groups. It should be kept in mind, however, that we are
referring to a specific deformation, and that examples exist (see [20]) where a contraction
of a deformed algebra has no bicrossproduct structure.

The paper is organized as follows. In section 2 we briefly describe the classical CK
algebras and present a discussion on contractions and dimensional analysis since this is
relevant for the assignment of physical dimensions to the deformation parameters. In
section 3 we give the explicit expressions for theideformations. The bicrossproduct
structure of thesg-deformed CK Hopf algebras is shown in section 4. Examples of this
structure for physically interesting algebras are presented in section 5. In section 6 we show,
as an example, how to obtain the (dual) group deformation in the case of lowest dimension
N = 2. In section 7 we present our conclusions and we close the paper with an appendix.

2. Affine CK Lie algebras and dimensional analysis

2.1. The CK scheme of geometries and Lie algebras

The complete family of theo(N +1) CK algebras is a set of real Lie algebras of dimension
(N+1)N /2, characterized by real parameter&o;, wo, ..., wy) [12]. This family appears,

for example, as a natural subfamily [13] of all the graded contractions from the Lie algebra
so(N + 1) [22] corresponding to &?’V grading ofso(N + 1), and its elements will be
denotedso,, w,...y (N + 1); in particular,soi 1 1(N + 1) = so(N + 1). In terms of a
basis 0fso,, w,...oy(N + 1) adapted to the gradingJ.,; a <b, a,b=0,1,..., N}, this
family of algebras is defined by

[Jaba Juc] = WapJpe [Jab’ u]]bc] = —Jac [Jaw ch] = wpedlab (21)

where nowa < b < c,a,b,c =0,1,...,N, wup ‘= 04110432 ...0p = ]_[fzﬁlwl (thus,
Wapwpe = wye) and [, Jeq] = 0 if the four indices are different. By a simple rescaling of
the generators, all the numerical values of the constantmay be brought to one of the
values 10, —1, hence the complete CK family contain¥ algebras which are different as
graded contractions, even if some of them may still be isomorphic.

When all thew; are non-zero but some of them are negative, the algelya,, . ., (N+
1) is isomorphic to a certain pseudo-orthogonal algebi@, q) (p+¢=N+1, p>q >

0). If all the w; are non-zero we can also introdufg,, (a < b) by J,, = —w—lbjab and
J.a =0, so that the commutation relations can be written in the familiar form:
Wijs Jim] = 8imJij — 8jdJim + Sjmwimdit + 8irwijdljm. (2.2)
If, however, some constant(s); = O, the algebras (2.1) become inhomogeneous

and correspond to algebras that are obtained froitp, ¢) through a sequence of IW

t We use the word ‘affine’ in the sense of inhomogeneous. Not all deformed inhomogeneous groups have a
bicrossproduct structure; this is, for instance, the cadé,6f(2)) as discussed in [20].
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contractions. To describe them let us dengté (m = 1, ..., N) the subalgebra generated

by the J., (@ < b) for which a, b satisfy eitherb < m ora > m. A complement for

h is the vector subspacg™ (not always a subalgebra) spanned by the elem@pts
with @ < m andb > m. The decompositiono,, u,...o,(N +1) = p™ & h™ is in

fact a Cartan-like decomposition, and there exists an involutive automorphism of the Lie
The structure of the subalgebt&™ and of the vector subspagé™ of the Lie algebra
SO0wy.m....0y (N + 1) can be graphically displayed by arranging the generatose @Y + 1)

in the form of a triangle

Joo Jo2 ... Jogn-1) \ Jom Joam+1) Jon
Jio ... Jim-1) Jim J1m+n Jin
Jm-25m-1 | Jon-2m  Jon-2m+1 -+ Jm-2n 2.3)
| Jon-vm  Jom-vmtn - Jm-pN
JI?l(m+l) ce JmN
In_1n.

We see that the generators which span the subspatare them (N +1—m) generators
in the rectangle determined by the corngy,_1),. The triangles at its left and below
correspond to the subalgebras,, . ., ,(m) andso,, .,  o,(N + 1 — m) respectively,
the direct sum of which is the subalgebi&”. The subspace corresponding to
the w,-rectangle in the diagram, can be identified with the Lie algebra quotient space

..........

ooy (N+1).
seens WON
Specifically, if we denote the generators of the standayd,,,. ..., (N+1) algebra byX, the
IW contractionl" ™ of 0., a,....ox (N + 1) is given by the — 0 limit of the replacements

X if X epm
rmx)=X = m=1...,N (2.4)

.....

eX if X eptm

AAAAA

family with the same values of the; constants except fav,, = 0. Thus, in the triangular
arrangement of generators, the possible IW contractions correspond to tNedifferent
rectangles that can be selected inside the large triangle. These rectangles are completely
Abelianized by the contractions, while the commutators with one or two generators outside
p™ remain unchanged. As an example, the contraction given by (2.4)mwita 1 and
starting from aso(p, ¢q) algebra, where ally; are different from zero, corresponds to the
limit ¢ — 0 of Jg — ]6, = eJoi, J,’j = ]l/](l #* 0, Jo, J,’j € so(p, q). This leads to
[ Jo;] = +€2J/; and henceJy; i = 1,..., N determines the Abeliav-dimensional
ideal p®.

Let us now consider the homogeneous spdice SO, w,...oy (N + 1) /SO, .. vy (N),
where SO, ..., (N) is the subgroup generated by the subalgeffa with m = 1. This
space has an invariant canonical connection, and a hierarchy of metrics, coming after suitable
rescalings from the Cartan—Killing form in the algebya,, ..., (N + 1). When the
constantswy, ..., wy are different from zero, then the ‘main’ metric is non-degenerate,
the invariant canonical connection turns out to be the corresponding Levi-Civita metric
connection, and the spaé&has a curvature which is constant and equabio
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In the particular caséw;, ws, ..., wy) = (w1, 1,...,1) the spaceS reduces to the
Riemannian space (positive definite metric) of constant curvatyrand dimensionn.
When w1 = 0 the algebrasog,.. ..y(N + 1), can be realized as algebras of groups
of affine transformations oY [12]; in this case we shall rename the generators as

{P; = Joi,dij5i < j,i,j = 1,...,N}, the new names stressing the role Bf as

generating translations and df; as the generators of rotations around the origin of
the space. Each subalgeby&”,m = 1,..., N, is spanned by the set of generators
{Pi,Jij,i,j=1,...,m—=LJu, k.l =m,..., N}, and hence the collection of subalgebras

h can be clearly identified in the spacas the isotropy subalgebras of a point (for
m = 1), of a line (form = 2), ..., of a hyperplane (fom = N).
The non-zero Lie brackets 0bg,,....., (N + 1) are given by

[«Hij» Pi] = IEDj [Jijs Pj] = —a)ij]P’i [Jijs Ju] = wiijk
[ij, Jjx] = =Jik ik, Jjx] = wjidi;
where the indices, j,k = 1,..., N are always assumed to be ordered; j < k. Note

in particular that all translation generators commute (as witnessing the zero curvature). It
will be convenient to denote this ,,. ..., (N + 1) Lie algebra byiso,,

(2.5)

sees oy WAV T A T AT MYER Y W), .

.....

150,, on (N) © Ty (2.6)

where Ty is the Abelian subgroup generated BP;;i = 1,...,N} (in the case
w; = 0, this Abelian subgroup can be identified with the CK homogeneous sface

,,,,,,,,,,

by {J;;i,j = 1,...,N}. The ‘main’ metric which is kept invariant by the action of
this group is described by the quadratic form given by a matrix with diagonal entries
(1, w2, wows, ..., w2...wy). Among these inhomogeneous groups we can recognize the
Euclidean group inN dimensions for which(wi, w,...,0y) = (0,1,1,...,1), the
Poincaé group in(N — 1, 1) dimensions (appearing several times in the CK affine scheme
as for example for0, —(1/¢?),1, ..., 1)) or the Galilei group in(N — 1, 1) dimensions
which corresponds to the valués;, w, ..., wy) = (0,0,1, ..., 1); we recall that in all of
these example®; = 0. The geometrical meaning of the contractidi®’, m = 1,..., N,
is to describe the behaviour of the spate= SO, o,..... oy (N) around a
point, a line,. .., a hyperplane. In particular, within the inhomogeneous CK family= 0,
only those contraction§™ m = 2,..., N may produce a different algebra. In other
words, these inhomogeneous algebras can be thought of as the result of a ‘local’ contraction
(around a point;n = 1) which make the associated curvature vanish, although they can
still be contracted to describe the behaviour of the space around a linea hyperplane,
and hence the remaining contraction$”, m = 2, ..., N may be relevant. For instance,
the non-relativistic limit, where the behaviour of spacetime geometry is approximated in the
neighbourhood of a given (time-like) line corresponds to the contraction where 0.

A second-order central element for the algebwa,, . .,(N), coming after a
specialization to this case of a suitable rescaling of the general CK Killing form, reads

.....

N-1
C=) wnyP?+P3. (2.7)
i=1

Notice that this Casimir only involves generators from the Abelian translation subalgebra.
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Summarizing, we see that the graded contraction language allows us to describe
contractions simply by setting some parameters equal to zero. These contractions may
still be described by the standard IW framework, although the graded contraction scheme
is more economical and permits a unified discussion of the different contractions.

2.2. Contractions and dimensional analysis

The minimal possible approach to study the dimensional structure in CK algebras is done
by enforcing the dimensional homogeneity of the commutation relations in all algebras
in the CK family. In this approach, all generators as well as the structure constants are
dimensional, in such a way that these dimensions are the same in all CK algebras. Consider
the redefinition]., = n.,J, for any CK algebra. If we now want the second commutator in
(2.1) to be preserved (we still choose the structure constants equal to 1 as dimensionless, for
we are interested here in algebras in the CK family, and not beyond), wempggd = ..,

so that we see that,, may be expressed ag, = 14110412 .- 1p- If we now make this
change in the first and third commutators, we get

/ ! Wa / / U Whe /
[Jab’ Jac] = Tbec [JGC’ "]]bc] = 7: ab* (28)
ab be

In the special case when all; are different from zero (the case of simple algebras), the
choicen?, = |w,| leads to the standard commutators for fljg of the real formso(p, q)

of the specific algebra considered, with all non-zero structure constants eqttdl tand

the J/,’s are dimensionless.

In the general case (for generic CK algebras) by virtue of the above redefinition, the
generators in (2.1) have as dimensiofis] = [was]Y? = [1/_,,4[w:]Y2 In this approach,
each constanb, has dimensions, and if the dimension of the generior, is written as
Da‘l, then it is clear that the dimensions of eash are [w,] = Da‘z, irrespective ofw,
being zero or not. The dimension of each generdigrincludes a factord,] for each of
the w,-rectangles in (2.3) to whicki,, belongs.

Another possibility is to allocate dimensions to generators and/or canonical parameters
for each CK algebra independently, in such a way as to make all non-zero structure constants
in the algebra dimensionless. The idea of basing the dimensional analysis of a theory on
the structure of its underlying Lie group/algebra has its roots in the well known examples
of the Poincag and Galilei groups, which are obtained by contracting with respect to two
dimensionful parameters, the de Sitter radius and the velocity of ligland has been
discussed in [23]; see also [24].

If for a simple Lie algebra in the CK family (2.1) with non-zetg constants we
adopt this hypothesis, then as a consequence all the generators of the algebra, as well as
their associated canonical parameters are also without dimensions (§g thi the first
approach). If the same requirement is applied to a non-simple CK Lie algebra, then we get
the result that some generators are also dimensionless, while others get a dimension. For
example, if this is done on a CK algebra wihsingle w, equal to zero, it is clear from
the commutation relations that those generators which acquire in this case a non-trivial
dimensionD,;! (D, is then the dimension of a corresponding canonical parameter) are
exactly those inside the,-rectangle corresponding to the constaptwhich vanished in
the triangular arrangement of generators.

If there are two constants equal to zero, sgy= w;, = 0, there will be two non-trivial
dimensions, and so on. Remark that now eagthas a dimension which is stil]);1 when
w, = 0 but is dimensionless wheh, # 0. In this alternative choice the dimensions of
the generators will still be given byI[,] = [ww]¥? = [1_,.1[@i]*/? but those factors
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wherew; # 0 are ;] = 1. This situation is exemplified in the transition from the Poigcar
to the Galilei algebras. These are given by the valu®s w, w3, ws) = (0, —1/c?,1,1)
and (0, 0, 1, 1) respectively, and the arrangement of the Galilei and or Pdnganerators
written in the usual physical notation is given by:

H P, P, P3
K, K, Ks

. 2.9
Ji2 Jis (2.9)
J2s
The assignment of dimensions made this way for Poineaud for Galilei algebras is
pr* bt bt Dt pr* pr*p;t prtpyt DDyt
1 1 1 Dt Dt D,*t
1 1 1 1
1 1

which gives the single ‘length’ dimension in relativistic physics and the custorfiaty
dimensions of non-relativistic physic®{ =T andD, = LT %, soD:D, = L).

The relation between both perspectives to the dimensional analysis of CK algebras is as
follows. All constantsw, can be considered at the beginning as dimensionful, and then all
generators are also dimensionful. However, when a giveg 0, the dimensiorD, can be
removed by takingy, as a pure number, which can be set equatfg this is tantamount
to fixing the scale of the generators or, in other words, to measuring the associated group
parameter in terms of the corresponding unit much in the same way as in a relativistic
theory we may adopt units in which= 1 (i.e. w, = —1 above). In the former example,
settingws = 1 = w4 May be understood as having hidden universal constants in the theory
(cf [25]). However, once a dimensionful, has been set equal to zero (i.e. a contraction
has been made), the generators in the corresponding box retain a dimengigf gince
they cannot be rescaled any longer. This is why some generators in the former Galilei
example retain the non-removable dimensiéns D,, while D, disappears in the Poinér
case whileD3, D4 have already disappeared in both cases

3. Deformed IN-dimensional affine CK algebras

All the family of affine N-dimensional ¥ > 2) CK algebrasso,,, ..., (N) can be endowed
with a standard deformed Hopf algebra structure which has been called a ‘quantum’
inhomogeneous CK structure and which has been given in [14,15]. In order to avoid
repeating statements on the index ranges, we will conform in sections 3 and 4 to the
following convention: the range of a latin indeéx;, k will be 1, ..., N — 1, and the index
N will be dealt with separately, unless otherwise stated explicitly. Also, when two indices
i, j appear in a generator, we will always assume that;.

Let A be the algebra of the formal power series in the deformation pararetdth
coefficients in the enveloping algebt&iso,,. . ., (N)) of the Lie algebraiso,, .y (N)
of (2.5). Then the coproduct, co-unit, antipode and deformed commutation relations of the
algebralf; (iso0.,.... .y (N)), which is a Hopf algebra, are given by

1 The above is not the only group-theoretical mechanism for the introduction of dimensions. Where centrally
extended groups are physically relevant, the dimensions of the two-cocycle realizing the extension play a role.
For instance, in thé€l + 1)-dimensional extended Galilei group we find two parameters characterizing the two-
dimensional cohomology space, which correspond to the mass and a (constant) force.
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(1) Coproduct:

APY) =1Q0Py +Py®1, AP) =€ " QP + P; @ e2Fx
AJijp))=1J;+1;®1
) i—1

\ \ PR A
_ o zP . . sPy 7 a— 5PN . - . Py .
AJiy) =€ 2P @ Jiy + Jiy ® €2 > XEZl Jsi€ 27" @ winPs + > ngl winPs @ eV J;

5 Nt ) 5 -t .
+§ Z Jise_EPN ® wsNIPS - é Z a)SNPX ® ezIPNJis' (31)
s=i+1 s=i+1
(2) Co-unit:
eP) =ePy) =e(lij) =elin) =0. (3.2)
(3) Antipode:
y(P) =P y(Py) = —Py
2 3.3)
yJip) = =Ji; yJin) = =Jin —oin(N — 1)51971'
(it may be written in a compact way agX) = —eN D3Py Xe-(N-D3P),
(4) Deformed commutators:
1 .
Uin, Pj] = Si'jX Sinh(APy)
52 /il j-1
Win, Jjn] = ij{Jij coshiAPy) + Z <Za)iNHDsWsij - ws NP W (3.4)
s=1 s=i+1
N-1
+ Z wsN]PsWijs>} i <j
s=j+1
where
W,’jk=a)l'j]P,'ij—PjJik+PkJij i <j <k i,j,kzl,...,N—l. (35)

The remaining commutators are non-deformed and as given in (2.5). It may be checked
that (A, A, ¢, y) satisfies the Hopf algebra axioms and hence equations (3.1)-(3.5) may
be taken as the definition of the deformati@(iso.,.. .wy(N)) Of U(i50w,.  oy(N)). The
parametei has an inverse dimension to that®Ry§ so that the productPy is dimensionless,

and may be interpreted as the parameter left after contracting the deformed Hopf algebra
..... oy (N +1)) by previously redefining in terms ofA and the contraction parameter.
However, the expression of the deformatid(so.,, . ., (N + 1)) in the ‘physical’ basis is

not known and this precludes us for the moment from deriving (3.1)—(3.5) by contracting
its deformed simple parent algelts (so.,, .., (N + 1)). Nevertheless, it may be seen
that the deformed Hopf algebt3 (iso.,. ..., (N)) is a quantization of the coboundary Lie
bialgebra/(iso,.... ., (N)), r) generated by the (non-degenerate) classiaahtrix

.....

N-1
r=Ax Jn APy (3.6)
s=1
Due to the structure of and our convention about dimensions, it turns out thas
dimensionless, regardless of the values of the constantéénce the product of,y and P
will always have the same dimensions By .
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We remark that the above deformation (3.1)—(3.5) is not the only one possible for the
,,,,, oy (V) family. However, it is distinguished by the fact that all its members present
deformed algebra and coalgebra sectors.

The quantum analogue of the second-order Casimir (2.7) is expressed by

N-1 4 A 2
i=1

l

As far as their action on the algebra generators is concerned, the quantum véﬂgi)ons

of the classical IW contractions™ are defined to coincide with the classical one (2.4).

In particular, the generatdPy is rescaled by the corresponding contraction parameter

in any of the contractions in the family™, I'* (Py) = P} = Py (for ¢ — 0). This
means that since one has to repl@gein (3.1) by P, /¢, the exponents there will diverge.

It is therefore natural to replace simultaneously €2/, i.e. to rescale the deformation
parameter byI'™ (1) = A’ = A/e (all primes are removed after taking the contraction
limit), as the simplest possibility to preserve the coproduct (3.1). Therefore, the quantum
contractionl"\"" is defined as the result of taking the limit— 0 in (3.1)—(3.4) once the
transformations

'™ (e, X) = I (e, X) X = (P, J) T (e, ) = A/e (3.8)

are performed. We conclude this section with three observations. First, we have made
a constant reference to the IW procedure only because up to now the graded contraction
theory had not been extended to deformed algebras. Secondly, as far as the geHerators
are concernedl™ = I'™, so that only the action of " on A makesI"™ and """’
different. The third comment is that the rescaling.odndPy implied by r§"’) may change

their dimensions (see section 2) while consistently keeping a dimensidritgsexponent.

4. Bicrossproduct structure of Uy (¢s0.,. . wy (IN))

It is not obvious to see whether the Hopf algebfdiso.,,.. ., (N)) has a bicrossproduct
structure by a simple inspection of (3.1)—(3.4). The clue in this direction is provided by
the bicrossproduct structure [21] of thePoincagé algebra [5] (appearing in our scheme
when (w1, w2, w3, ws) = (0, 1, 1, —1)), which is clearly displayed in terms of a new set of
generators.

The aim of this section is to show thait the deformed Hopf algebrés (iso.,. ...y (N))
in the CK family have indeed a bicrossproduct structure. The basic bicrossproduct formulae
used are recalled in the appendix; for a detailed exposition, see [17]P;|€l;, Py, Jin
be the new set of generators defined in terms of the old BpesidJ;; by

P, = e W/2Pnp, Py =Py Jij = dij

1 — (/2P A Y = — (/2P (4.1)
Jin = E{JiNs e MY+ 2 ;wiN{«]]xi» Ps}e N — 2 Z wsn{Jis, Psle N

s=i+1

A straightforward but tedious computation leads to the following new expressions (where
i,j,k=1,...,N —1) for the coproduct (3.1), co-unit (3.2), antipode (3.3) and algebra
commutators ((3.4) and/or (2.5)):
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(1) Coproduct:
AP)=e""oP +P®1 APY)=1® Py + Py ®1
A(Jj) = 1® Jij +Ji; ® 1

i1 N1 (4.2)
AUin) = €M @ Jiy + Jin @ L+ A Y _oinP® Ji =1 ) o P ® is.
s=1 s=i+1
(2) Co-unit:
e(P) =¢e(Py) =¢e(Jij) =e(in) =0. (4.3)
(3) Antipode:
y(P) = —exp(APy)P; y(Py) = —Py y(Jij) = —Jij
i1 N-1 (4.4)
y(Jin) = =€ Jiy + 2e ZwiNPs-]si — reM Z wsn P Jis.
s=1 s=i+1
(4) Commutators:
[P, P]]=0 [P, Py] =0
[Jij, Jik] = wijJjx [Jij» Jix]l = —Jix [ik, Jix] = wji Jij
[Jij, Jin] = wijJin [Jij, Jin] = —Jin [Jik, Jin] = wjn Jij 45
[ij, Pl = Sik P — Sjrwwij Pi [Jij, PN] =0 (4.5)
1—-e2h )=
[Jin, Pl =6ij | —— — 5 a)sNPYZ + Aoy P; P; [Jin, PN] = —win P;.
2 2 Ly N

Thus, all brackets for the new generatdis Py, J;;, Jiy coincide with the non-deformed
ones given in (2.5) (substituting everywhere the ngig for their counterpartX) except

for [Jin, P;], which is now the only deformed commutation relation. The effect of
(4.1) is to modify the second commutator in (3.4), so that one recovers the undeformed
SOwy.an....0n (N + 1) algebra commutators, and to replace the commutators in the first line
of (3.4) by those in the last line of (4.5). As a result, terms with Wiesymbols are no
longer present in the deformed commutators.

It may be checked that fax = 1/k and N = 4 with (w1, w2, w3, w4) = (0,1, 1, —1)
equations (4.2)—(4.5) reproduce tkePoincaé algebra in the basis of [21] for which
[k] = L7, [P4] = L% If we want P, to have dimensions of inverse time we may
take (w1, w2, w3, wg) = (0, 1, 1, —c?) instead sincev;, before being set equal to zero, was
w1 = 1/R?; in this case ] = T~1. We check that the metric after (2.6) will diverge in
a non-relativistic limit withws = —c?, which explains why a non-relativistic limit of the
k-Poincaé algebra [5] requires a further redefinition of the deformation paranref{see
the end of section 5).

The new expressions for the coproduct, co-unit, antipode and commutation relations
of U (iso,,....y(N)) now allow us to uncover its bicrossproduct structure. For
this aim, consider the translation sector, generated{By, ..., Py}. According to
expressions (4.2)—(4.5), it defines a commutative but non-cocommutative Hopf subalgebra of
U (i50,.....wy (N)) which will be denoted a&f, (Ty). Now letl (so,,. ..., (N)) be the non-
commutative and cocommutative non-deformed CK Hopf algebra spanned by the remaining
generatord J;;;i < j,i,j = 1,..., N}, hence with commutation relations given by (2.5)
and primitive coproduct (when alb’s are non-zero, this is a pseudo-orthogonal algebra).
Let us define a right actiot : U, (Ty) ® U(504,. .. wy (N)) — U (Ty) by

Ol(P,‘,ij)EP,‘QJ]'k = [P,‘,ij] j<k, i,j,k=1,2,...,N (46)
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where the commutators are given in (4.5), and a left coagion (so.,. wy(N)) —
U (Tn) @ U(50,.....0n (N)) DY

BWJij) =1® J;;
p i—1 N-1 (47)
BUUin) =€ Q@ Jiy +)»ZwiNPs ® Jyi — A Z wsy Py ® Jis.
s=1 s=i+1

It may be checked thatlf,(Ty) is a right U(s0,.. ., (N))-module algebra
,,,,, oy (N))>< U (Ty)) and thatif (soe,.....y (N)) is a left U, (Ty)-comodule coal-
gebra YU(so.,. ., (N)) >4 U,(Ty)) under the action (4.6) and coaction (4.7), respec-
tively, and that the compatibility conditions [17] (A.1)-(A.5) betweery 8 needed for

.....

.....

following.

Theorem The deformed Hopf CK family of algebradf, (iso,,
bicrossproduct structure

.....

~~~~~~~~~~

relative to the right actiom and left coactiorng given by (4.6) and (4.7) respectively.

Proof. As mentioned, the mappingsandp satisfy the bicrossproduct conditions as may be
checked by direct computation. Then expressions (A.6)—(A.9) give the associated coproduct,
co-unit and antipode. It is then verified that the resulting expressions are in agreement with
(4.2)-(4.5). O

The interesting consequence of the above discussion is that, as the direct inspection
of expressions (4.6) and (4.7) shows, the action and the coaction mappings depend on the
parametersy; in such a way that the bicrossproduct structure is formally invariant under
any contractionw; = 0. In other words, fori-deformations in the affine CK family,
the bicrossproduct structure is preservedadtly the successive contractions: contracting
and taking bicrossproduct of the appropriate Hopf algebras with the resulting actions and
coactions are commuting processes. This is well within the spirit of the CK scheme, the aim
of which is to state properties which hold simultaneously for a large number of algebras.

The expression of the deformed Casimir (3.7) in the new basis is

N-1 4 N 2
Gy = Z w; € pi2 + Tz [sinh(zPNﬂ (4.8)

i=1
it only depends on the generators of the deformed Hopf subal@éliia, ).
On the other hand, the expression for thmatrix is similar to the former (3.6) but in
terms of the new generators,

N-1
r=xY_ JiAP. (4.9)
s=1

5. Applications

The quantum algebras we are dealing with range from deformations of the inhomogeneous
algebrasiso(p, q), p + g = N (when all constantg»,, ws, ...wy are different from zero)
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to the extreme case of a Hopf deformation of the algebra, where all constants are equal
to zero, which can be called flag space algebra (in this case the group action preserves a
complete flag).

Classically, all these algebras are semidirect products, and indeed there is a semidirect
structure in the CK algebras associated to the vanishing of each coangtaiwe have
restricted ourselves here to the algebras with= 0, all of which have the semidirect
structure displayed in (2.5). Whail remaining constants; are different from zero, say
w; = 1, the algebraso,,, .. ., (N) is isomorphic to an inhomogeneous pseudo-orthogonal
algebraiso(p, q), p + ¢ = N, with the semidirect structure given by the natural action of
so(p,q) onRY. These algebras are physically very relevant and some of their deformations
have been thoroughly studied. In particular, thdeformed structures given in (3.1)—(3.4)
include a deformedv-dimensional Euclidean algebra, a defornidt— 1, 1) Galilei algebra
and several deformedN — 1, 1) Poincaé algebras, as well as their analogues for any
signature.

The action and coaction mappings associated with the bicrossproduct are given by (4.6)
and (4.7). Explicitly, equation (4.5) gives

a(Py, Jij) =Py < Jij =0 a(Py, Jin) = Py < Jiy ‘= win P

(P, Jij) = P < Jij '= =8 Py + &kjwij P;
(5.1)
1_ —2)»PN )\'

N-1
(P, Jin) =P < Jiy = —(3/”'(2)L - E ZwSNPs2> — Ay P Py.
s=1

If we consider the special case wheré = 4, this set of algebras includeur
deformed Poincér algebralf, (p)(3,1)),s = 1,2, 3,4. These are deformations of the
four undeformed CK algebras, denotedp&%(3, 1), s = 1, 2, 3, 4, which are isomorphic to
the (3, 1) Poincaé algebra, and correspond to identifying one of the generatote the
time translation generator, the other three being space translations. If the time generator is
taken successively to be o, P,, P3, P4, these four algebras correspond to the four sets
of values of(w1, wo, ws, wa) = (0, =1/¢2, 1, 1), (0, —c?, —1/c?, 1), (0, 1, —c?, —1/¢?), and
(0, 1,1, —c?). The set of four deformed Poinéalgebrags, (p*) (3, 1)), s = 1, 2,3, 4 [15]
includes three ‘space-like’ Poin@ideformed algebras, the last one being #h@oincaé
algebra once. = 1/« with [Py] = T~1). In each case, the rotation generators comprise the
boost and space rotation generators and the identification is made according to the choice of
the time generator (e.g. in thePoincaé the boosts are th¥; = J;4). The N-dimensional
k-Poincaé [26] is associated to the; values(0, 1, ..., 1, —c?).

The Euclidean algebra4) appears only once (up to rescalings) {on, w;, ws, ws) =
(0,1, 1, 1) and the bicrossproduct structure of their Hopf CK quantum deformatioen(4)),
is

Uy (e(4) = U(so(4)) el (Rs)

(see [20] in the lower-dimensional case).

The remaining quantum Hopf algebras in the CK family are quantum deformations
of less known undeformed Lie algebras, yet their bicrossproduct structure is described in
parallel to the former cases. Especially relevant from the physical point of view is the
Galilei algebrag(3, 1), appearing within the affine CK family for the values(0, 0, 1, 1)

(and only for these). It is worth remarking that this Galilei algebra is obtained from the
U, (™ (3, 1)) associated to the values(0, —1/c?, 1, 1) by means of the contractiap, — 0
(i.e.c — o0), which gives a deformation different from that in [27, 28]. The bicrossproduct
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structure of the resultingy, (g(3, 1)) Hopf algebra (obtained fo0, 0, 1, 1) is

U(9(3, 1)) =U(s00,1,1)(4) valhy.(Ry) = U(is0(1,2)(3)) calh;. (Ra).

It is interesting to check how the action and coaction mappings for the Péirttapf
algebral/, (pY'(3, 1)) reduce to the corresponding Galilean ones under the contraction
wy, — 00 Up(p® (3, 1) to U, (g(3,1)). We give explicitly the complete Hopf structure
of both 24, (p™®(3, 1)) and U4, (g(3, 1)), which correspond to the choice8, —1/c?, 1, 1)
and (0,0,1,1) for the w;’s. We will present the results in the usual physical basis,
constituted by the generators of time translatiéh, space translation®;, P,, P3, boosts
K1, K2, K3, and space rotationg, J, J3, which are related to the CK original generators
{P:, Jij; i, j =1, 2,3, 4} as follows. The threspacetranslations, now denoted &, P>, Ps
in order to conform with the standard physical notation, correspond to those formerly
denoted ag, Ps, P4 in (4.2)—(4.5), while the time translation generatbmow corresponds
to the former P; and the rest in (4.2)—(4.5) correspond fp = Ki, Ji13 = Ko, J1ga =
K3, J34 = J1, Joa = —Jo, Jo3 = J3, @S given in diagram (29)

The Hopf structure of the Poindar algebra i, (»™(3,1)) now follows from
expressions (4.2)—(4.5):

(1) Coproduct:

AX)=e"PeX+X®1 X € {H, Py, P5)
AP3)=1@ P3+P3®1
AX)=19X+X®1 X € {K1, K>, J3}

3P (5.2)
AK3) =" QK3+ Ks®1—-APiQ K1 — AP, ® K>
AW =e"P@ N+ 11+ HQ Ky +AP1® J3
A =" QL+ LR1—AHQ K1+ AP, Q Js.
(2) Co-unit:
e(H)y=¢(P)=¢e¢(K;))=¢(J;)) =0 i=1,23 (5.3)

(3) Antipode:

y(X) = —eX X € {H, Py, P3} y(P3) = —Ps

y(X)=-X X € {K1, K>, J3}

y(K3) = —€3 K5 — A& PiK1 — A& 2K (5.4)
y(J) = - + 2 BHK, + 22 Py U3

y(h) = -t ) —xeHEK, + 22 Py ;.
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(4) Commutators:

[H»Pl]:O [Plvl‘)j]:O l,]:O,1,2,3

1—e?P A, A A

Kl',H =])t =l’2 K,Hz _7H_*P2—7P2
[K:. H] ' [Ka, H] 2 22 217 3%
1
[Ki. Pl = S8, H ij=12 [K:, Ps] =0
A A 1
[KS’ Pl]:_izHPl [Kg, PZ]Z—*ZHPZ [Kg, P3]=—2H
C C C
[Ji, H] = APH [Jo, H] = —AP H [Js, H] =0
1—e2h ) A A 5.5
Ui Pl =2PePL U Pl ==+ o H = PR+ P (6-5)
[J1, Ps] =—P»
l—e2Phs ) A A
[JZ,Pl]—_T_?HZ—E 12+§P22 [J2, P)] = —APLP>
[J2, P3]l = P1
[J3, Pl = P> [J3, Po] = —Py [J3, P3] =0
1
[Ki, K] = _?Siijk [Ji, Kj] = &ijx K [Ji, Ji] = €iju i i,j=123.

The explicit form of the action and coaction fof, (p™™ (3, 1)), given by (4.6) and (4.7) is
obtained from the commutators (5.5) and the coproduct (5.2). The bicrossproduct structure
of Uy (PP (3, 1)) is

U3, 1) = U0 1/c2.1.1) (D) valhs (Ry).

In the non-relativistic limit,w, = —1/¢> — 0, this deformed algebra goes to a new
deformed Galilei algebrd{; (g(3, 1)), whose coproduct, co-unit and antipode are the same
as in (5.2)—(5.4). With respect to the Lie commutators we write only those that are different
from the Poincae U4; (p™ (3, 1)) ones in (5.5)

1—e2Pf ) A
KaHl=— — _Zp2_Zp2
[Ks. H] 21 2’17272
[K:, P]=0 i,j=123
1—e2Pf ) A
JLPl=" T p?24p? 5.6
[J1, P2] ) 2 1+2 5 (5.6)
l—e2P ) A
Jo, Pl =" —— — 2 PZ+ Z P?
[2 1] 2 2 1+2 2
[Ki,K;]=0 i,j=1,23.

From simple inspection we see that the Galilean action (as the commutators) has changed
from that inZ4; (p™™ (3, 1)), yet the coaction is the same as in Poikcsince the coproduct
has remained the same.

All other Poincaé quantum algebras (including tlkePoincag) do not allow a direct
‘non-relativistic’ contraction; this is clear when the constarg explicitly written as above
(see [28] for a discussion).



Deformed inhomogeneous algebras 3083
6. The group deformation aspect: the case of Fu(Z.S0.,(2))

The bicrossproduct structure &f, (iso,,. ..,(N)) opens the way to the possibility of
recovering the dual group FUET S O, w,....o, (N)) more easily from the dual bicrossproduct
‘group-like’ expressions. We show here the explicit calculation in the lowest dimension
N = 2 to exhibit the procedure. As shown in section 4, the deformed Hopf algebra has the
bicrossproduct structure

Up(i500,(2)) = U(50,,(2)) oalh.(T2). (6.1)

Let us now recover from it the quantum dual group, KU 0,,(2)).
The dual algebra FuyiT,) of U, (T,) is easily found fromis, (T,) to be

Ala)) =1Qa1+a1®1 Ala) =1®ax+a2®1 (62)

E(Cli) =0 )/(Cli) = —da; i = 1, 2 (63)
and

[al, az] = )Lal (64)

wherea,, a, are a system of coordinates of F(fi>).
On the other hand, let Fg8O,,,(2)) be the dual ot/ (S0.,(2)) generated by, with
a non-deformed Hopf structure defined by

Alp) =1Q¢+¢®1 e(p) =0 v(p) = —o. (6.5)
Now, the problem is finding a pair of mappingsanda (see the appendix),

B : Fun,(T2) — Fun.(T2) ® FUunS0,,(2))

a : Fun (T2) ® Fun($ 0., (2)) — Fun(S 0.,(2))

duals, respectively, ta andg as given in (5.1), (4.7) fov = 2. A calculation shows that
they have the form

B(ar) = a1 ® Coy(9) + a2 ® @3S0, (9)
B(az) = —a1 ® Suy (@) + a2 ® Coy(9)

(6.6)

(6.7)

and
(a1 ® ) = A1 — Cuy(p)) (a2 ® ¢) = ASu,(9) (6.8)
where the functiong,,(¢) and S, (¢) reduce to the trigonometric cosine and sine functions
for o = 1 and to the hyperbolic ones far= —1 (see [29] for more details). Note that
Con(9) —Swz(¢)>
w2 Sa)z (@) sz (@)

where the 2x 2 matrix is the transpose of the matrix representing the generic element of
the groupS O, (2).

Since 8 modifies the originally cocommutative coproduct in F(ify) and & the
commutation relations between the generators of the two algebragThunand that
generated byy (see equations (&) and (A.6)), we may now determine through its
bicrossproduct structure the deformed Hopf algebra, £3@,,,(2+ 1)) which has the form

Alar)) =1® a1+ a1 ® Cu,(@) + a2 @ @28,,(¢)
Aaz) =1Qaz — a1 ® Su, (@) + a2 ® Co,(p) (6.9)
Alp) =1+ 1

(B(ar), B(az)) = (a1, a)® (
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g(a)=0 i=12 (@) =0 (6.10)
y(a1) = —Co,(@)ar — w28y, (@)az
v (az2) = Sw,(@)ar — Coy(p)az

[a1, ] = A(1 = Cu,(9)) [az, 9] = 18w, (9) [a1, az] = ra;. (6.12)

In this way the results obtained in [29] (and [20] fes = 1,a1 — —a2, a2 — ai) are
recovered.

(6.11)

7. Conclusions

The bicrossproduct structure is true for all deformed Hopf algebras in the inhomogeneous CK
family U (is0,,...»y(N)). The theorem in section 4 follows from the fact that the action and
the coaction mappings that characterize the bicrossproduct structfgieb,,,. ., (N))
depend onw;, ws, ..., wy in such a way that the contractions are simply described by
setting (some of) them equal to zero. In this sense we may say that the bicrossproduct
structure (4.6), (4.7) is compatible with the contractions (3.8). As a result, any contracted
Ar-algebra is also a bicrossproduct for the ‘contracted’ action and coaction. We can also
state this result by saying that the bicrossproduct structure does not diverge under any of
the contractions within the CK affine family. These results extend obviously to the dual
Fun.(IS0.,... ., (N)) family of deformed Hopf algebras.

The deformation parameterbehaves in the same way under the complete family of CK
contractions of the inhomogeneous algel§ so,,....», (N)); if the (first, for instance)
contraction has been realized as a limit, the deformation paramétes = € is redefined
by " (z) = ' = % (cf equation (3.8)) and the limit correspondség]/> = 1/R — 0. As
discussed, this can be understood as a mechanism assigning dimensions to the deformation
parameter characterizing the deform#(iso,,. .,(N)) CK family. In any case, we
wish to stress here that the dimensionsiofrhich result from théirst contraction process
(that involving w;) depend crucially on the assumed dependence of the dimensignless
(or z) on the new deformation parameterand of the contraction one. For instance, if
g = exp(A/R) as above, where is a radius (length),] = L. Any other dimensions
assigned tor necessarily include hidden hypotheses on the dependenge oof other
fundamental constants @ndc are necessary, for instance, in order to haje [mass)?).

This is especially important because the appearance of PlaAcKtr instance, implies
guantum considerations in the strict (i.e. physical) sense of the word. These go beyond the
purely mathematical deformation process, and should be accordingly discussed separately
in any physical application of a-deformed algebra (see [30] in connection with deformed
Minkowski spaces).

It would be interesting to know whether the bicrossproduct structure is present in other
cases, i.e. fow, # 0 different from thew; = 0 deformations considered here. However,
‘physical’ (rather than the Cartan—Weyl) basis is unknown, and this precludes us for the
moment from discussing this point.
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Appendix: Some bicrossproduct formulae

We reproduce here some of the formulae needed in the main text, and refer to [17] for

a . AQH — A,a(a ® h) = a < h, and the left coacfiém T H —-> AQH,B(Hh) =
D ®h? (WY e A h? e H) so that(A, ) [(H,p)] is a right H-module [left A-
comodule]. The compatibility conditions are

eala <h) = ea(@ep(h) (A1)

Ala<h)=(a< h)(l) ® (a < h)(z) = (a(l) < h(]_))hg; ®ap) < hg; (A2)

Bl =10 @19 =1, 1y (A.3)

Bhg) = (he)® ® (hg)® = (h™® < ga))gy ® hPgls) (A.4)
2 2

hp(a<he)®hy) = (a<ha)hy @h (A.5)

(subindices refer to coproducts as usuglperindicesrefer to the components @ (h)).
When they are satisfied the right—left bicrossproduct structiffe<, 4 on K = H ® A is
determined by

(h®a)(g®b) =hga ® (a<g2)b h,geH, abe A (A.6)
Ax(h®a) =ha ® hgga(l) ® hg; & acp) (A.7)
k= R EY e =14 ® 14 (A.8)
Sth®a) = Ly ® Sa(hPa)(Sy(h?) ® La). (A.9)

Let A, H be the duals ofd, H. The dual ‘group’ aspect of the above formulae imply
the existence of mappings: AQ H - H,8: A — A® H, dual to(8, «) respectively,
which satisfy the conditions

eg(ash) =ex(a)ey (h) (A1)
Aash) = (ash)g ® (@b h)e = @35 ha) ® ay(ae 5 he) (A'.2)
By =17 ®17 =14 ® 1y (A".3)
Blab) = (@b)? ® (@b)? = a3pb® ® a2 (a5 b®) (A.4)
ag)) ® (aq Sh)a(%) = a((ii ® a(%)(a(g) >h). (A.5)
Then, there is a left-right bicrossproduct structiéite? A on K = H ® A defined by
(h®a)(g®b) =h(aw>g) ®apb h,ge Ha,be A (A’.6)
Ax(h®a) =ha ®af) ® hpal) ®ag) (A7)
cx =y &y 1k =1y ® 14 (A'.8)
Sth®a) = 1y @ Sa(@?)) (S (ha®) ® 14). (A"9)
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